
– Submission to Logique & Analyse –

Frege, Peano and the construction of a logical
calculus

Joan Bertran-San-Millán

Abstract

In contemporary historical studies Peano is usually linked to the logi-
cal tradition pioneered by Frege. In this paper I question this association.
Specifically, I claim that Frege and Peano developed significantly different
conceptions of a logical calculus. On the one hand, I defend thatwhile Frege
put the systematisation of the notion of inference at the forefront of his con-
struction of an axiomatic logical system, Peano modelled his early logical
systems asmathematical calculi and did not really attempt to justify reason-
ing. On the other hand, I argue that in later works on logic Peano advanced
towards a deductive approach that was closer to Frege’s standpoint.
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1 Introduction

Although Peano never defended a logicist position, he is usually linked to the
logical tradition pioneered by Frege1. As a key influence for Russell’s logic,
Peano’smathematical logic is considered to be part of a tradition that is inmany
respects opposed to the algebra of logic tradition.

In contemporary historical studies, the relation between Frege’s and Peano’s
conceptions of logic has received little attention. In this paper I shall question
the inclusion of Peano in the logical tradition which Frege started. Specifically, I
shall study Frege’s and Peano’s conceptions of an axiomatic logical calculus and
conclude that they developed substantially different accounts. I shall claim, on
the one hand, that while Frege put the systematisation of the notion of infer-
ence at the forefront of his construction of an axiomatic logical system, Peano
modelled his early logical systems as mathematical calculi and did not really

1See, for instance, (Jourdain 1914, p. 14) or (van Heijenoort 1967a). This association is still
present in recent works on the history of logic. See, for instance, (Haaparanta 2009, pp. 6–7).
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attempt to justify reasoning. On the other hand, I shall defend that in later
works on logic Peano advanced towards a deductive approach that was closer
to Frege’s standpoint.

This paper is in four parts. First, I shall consider Frege’s notion of an infer-
ential calculus and explain how he realised this notion in two steps. Second,
I shall characterise Peano’s notion of an axiomatic system. Third, I shall study
Peano’s early attempts to develop a logical calculus. Last, I shall discuss the
evolution of Peano’s notion of calculus. I shall divide Peano’s works on logic
into two periods and characterise the progress from one period to the next as a
process of development of the deductive capabilities of logical calculi.

2 Frege’s logical calculi

In the Foreword to the first volume of his magnum opus, Grundgesetze der Arith-
metik (1893, 1903) (hereinafter, Grundgesetze), Frege connected his approach to
the construction of a logical axiomatic system with a mathematical tradition
that goes as far back as Euclid and, at the same time, he stressed the novelty of
his own approach2:

“The ideal of a rigorous scientificmethod formathematics that I have striven
to realise here, andwhich could be named after Euclid, can be characterised
as follows. It cannot be required that everything be proven, as this is im-
possible; but it can be demanded that all propositions appealed to without
proof are explicitly declared as such, so that it can be clearly recognised
on what the whole structure rests. One must strive to reduce the number
of these fundamental laws as far as possible by proving everything that is
provable. Furthermore, and in this I go beyond Euclid, I demand that all
modes of inference and consequence which are used be listed in advance.
Otherwise compliance with the first demand cannot be secured. This ideal
I believe I have now essentially achieved.” (Frege 1893, p. vi)3

Frege’s methodology for logic was connected with the axiomatisation in
mathematics. The notion of axiomatic system can be associated with a spe-
cific conception of calculus, to which I shall refer as ‘mathematical calculus’. A
mathematical calculus is a system composed ofmathematical objects (numbers,

2See a similar passage in (Frege 1897, pp. 362–363; 235–236).
3Quotes are taken from the English translation or the most recent edition listed in the bibliog-

raphy. When an English translation is quoted, two page numbers – separated with a semicolon –
are given: the first corresponds to the source and the second to the English translation (unless they
coincide). When no English translation is available, quotes and page numbers are taken from the
source and translated by the author.
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manifolds, areas, infinitesimals, etc.) and a set of operations that regiment the
relations between these objects. One of the main aspects of Euclid’s tradition is
the axiomatisation of laws governing the operations of the calculus.

Frege’s groundbreaking departure from themathematical understanding of
a calculus consisted in taking judgements as objects of the calculus and provid-
ing a complete and explicit system of inference rules which worked as specific
operations between these judgements. In Frege’s logical system – the concept-
script – reasoning was reconstructed as a derivation (Ableitung), a succession
of judgements that were connected by means of inference rules. This was the
basis for the development of an inferential calculus.

Frege’s process of construction of a logical calculus was complex. He pre-
sented the first modern formal system in Begriffsschrift, eine der arithmetischen
nachgebildete Formelsprache des reinenDenkens (1879) (hereinafter, Begriffsschrift).
Begriffsschrift’s concept-script could be seen as a theory of inference. Even the
language of the concept-script was conceived with the notion of inference in
mind4. In Frege’s words:

“[I]ts [the concept-script’s] chief purpose should be to test in the most re-
liable manner the validity of a chain of reasoning and expose each presup-
position which tends to creep in unnoticed, so that its source can be investi-
gated. For this reason, I have omitted the expression of everything which is
without importance for the chain of inference [Schlussfolge].” (Frege 1879,
p. iv; 104)

In order to systematise the notion of inference, Frege constructed the cal-
culus of the concept-script as a set of axioms, which he called ‘basic laws’, and
inference rules. He listed eight basic laws (1879, p. 26; 136). These were judge-
ments which were left unproved in Begriffsschrift, and which were used for the
proof of logical laws. Frege appealed to the fact that they constituted the kernel
of content of the concept-script (1879, p. 25; 136). Even though Frege acknowl-
edged that his specific choice of basic laws could be made otherwise, he also
made it clear that his choice was methodologically motivated.

The only inference rule that Frege introduced explicitly as such is Modus
Ponens (hereinafter, [MP]) (1879, pp. 7–9; 117–120). However, he used several
times in the proofs contained in Chapter III of Begriffsschrift two additional in-
ference rules5. Frege presented [G] and [C] in the exposition of the language

4Frege explicitly claimed that in Begriffsschrift “the only thing considered in a judgement is that
which influences its possible consequences [Folgerungen]” (1879, §3, p. 3; 113), and he called this its
‘conceptual content’.

5Let A be a formula and Φ(a) a formula in which the letter a occurs. For the sake of clarity, I
formulate all concept-script propositions in a hybrid notation. All content strokes – save that which
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of the concept-script, but he neither characterised them as inference rules nor
included them explicitly in the calculus. On those occasions in which a proof
required the application of one of these rules, he did not mention them; their
application was left to be guessed by the reader6. More importantly, although
Frege offered some remarks regarding the notion of substitution, he did not
define substitutions and, crucially, he did not characterise the corresponding
inference rules. Specifically, according to contemporary standards of rigour,
Frege should have defined substitutions for propositional variables, of individ-
ual terms for individual variables, of relation symbols for predicate variables,
and finally of formulas for predicate variables. Each kind of substitution re-
quires an inference rule that permits the derivation of an instance of substitution
from a theorem of the calculus. Virtually all proofs contained in Begriffsschrift
require the application of one or more substitution rules7.

The inferential character of the calculus of Begriffsschrift is exemplified in the
proofs contained in Chapters II and III of this book. Consider, for instance, the
derivation of Proposition (62) (Frege 1879, p. 52; 164):

1. (d→ (b→ a))→ (b→ (d→ a)), Prop. (8).

2. [∀a(g(a) → f(a)) → (g(x) → f(x))] → [g(x) → (∀a(g(a) → f(a)) →
f(x))], Subst. in (1):

follows the judgement stroke – are eliminated and the generality symbols a and the connectives
(negation and conditional) are rendered according to their contemporary equivalents. The differ-
ent typefaces used by Frege are maintained.

I shall call Generalisation (hereinafter, [G]) the first of the aforementioned additional inference
rules. Frege introduced [G] thus (1879, p. 21; 132):

Φ(a)
[G]

∀aΦ(a),

if a does not occur in ∀aΦ(a).
I shall call Confinement of the quantifier (hereinafter, [C]) the following rule (1879, p. 21; 132):

A→ Φ(a)
[C]

A→ ∀aΦ(a),

if a does not occur either in A or in ∀aΦ(a).
6In the Preface on Begriffsschrift Frege appealed to methodological reasons to restrict the list of

inference rules of the concept-script to [MP] (1879, p. vii; 107). However, Frege also acknowledged
the possibility of adding derived rules to the calculus to simplify proofs. Moreover, he would qual-
ify his claim on the limitation of inference rules in the Preface by stating that [MP] is the only
inference rule of the concept-script that allows the derivation of a conclusion from several judge-
ments. Any other inference rule used in the concept-script – specifically, [G] and [C] – allows the
derivation of a judgement from a single judgement.

7The question whether Frege did include or should have included one or several substitution
rules in Begriffsschrift is complex and far surpasses the scope of this paper. With Calixto Badesa, I
offered an analysis of this issue in (Badesa and Bertran-San Millán 2020).
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a b d

f(x) g(x) ∀a(g(a)→ f(a))

3. ∀af(a)→ f(c), Prop (58).

4. ∀a(g(a)→ f(a))→ (g(x)→ f(x)), Subst. in (3):

f(A) c

(g(A)→ f(A)) x

5. g(x)→ (∀a(g(a)→ f(a))→ f(x)), Prop. (62): [MP] (2),(4).

All proofs of Begriffsschrift shared the structure of this derivation. First,
Frege indicated two logical principles thatwere used as premises. The premises
of this derivation are Propositions (8) and (58), which are basic laws of the cal-
culus. Then, Frege listed the substitutions that have to be performed to the
premises8. In this way, instances of the premises were inferred. Sometimes,
[G] or [C] were applied to one or both premises. Finally, [MP] was applied to
the respective instances of the premises in order to obtain the conclusion.

Frege’s stress on a systematisation of the notion of inference was further de-
veloped inGrundgesetze. In thiswork he offered a revised version of the concept-
script. In Grundgesetze Frege inverted the strategy adopted in Begriffsschrift and
reduced the list of basic laws whilst he considerably enlarged the list of infer-
ence rules. The concept-script of Grundgesetze was composed of six basic laws
(1893, p. 61) – two of which, basic laws (V) and (VI), involve the notion of
value-range, which did not appear in Begriffsschrift.

In contrast with how the rules [G] and [C] were treated in Begriffsschrift,
Frege offered an exhaustive list of inference rules in Grundgesetze. He provided
twelve inference rules (1893, pp. 61–63), although some of them should be con-
sidered derived rules and others should be taken as instantiation principles.
As a result, Frege obtained a formal systemwhose derivations were completely
regimented by the inference rules. No formal step was left implicit and no ap-
peal to non-defined logical principles needed to be made.

3 Peano’s axiomatic systems

Peano presented his first axiomatisation of arithmetic in Arithmetices principia
nova methodo exposita (1889) (hereinafter, Arithmetices principia)9. Peano’s ap-
proach of providing a set of axioms for arithmetic fits with the general trend in

8The inference from premises to instances of substitution has been represented as steps (2) and
(4) in the derivation, where substitution tables have been included. Note that the upper row in the
table contains the letters that are to be replaced in the premises and the lower row their instances
of substitution.

9Peano’s axiomatisation of arithmetic is equivalent to Dedekind’s, which was included in Was
sind und was sollen die Zahlen? (1888). In Arithmetices principia Peano only said in connection to
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nineteenth-century mathematics of establishing the basic principles of a math-
ematical theory10.

Peano’s notion of an axiomatic theory relied on the establishment of two
privileged sets of elements: the notions that remain undefined, which are con-
sidered simple and from which all ideas of the theory can be defined, and the
axioms, that is, those propositions that receive no proof and from which all
theorems are obtained. In Arithmetices principia Peano applied this conceptual
framework to his presentation of arithmetic:

“Those arithmetical signswhichmaybe expressed byusing others along
with signs of logic represent the ideas that we can define. Thus I have de-
fined every sign, if you except the four which are contained in the explana-
tions of §1 [N, 1, +1, =]. If, as I believe, these cannot be reduced further,
then the ideas expressed by themmay not be defined by ideas already sup-
posed to be known.

Propositions which are deduced from others by the operations of logic
are theorems; those for which this is not true I have called axioms. There
are nine axioms here (§1), and they express fundamental properties of the
undefined signs.” (Peano 1889, pp. iii-iv; 102)

In ‘Formole di Logica Matematica’ (1891a, pp. 24–25) Peano developed this
approach and introduced the distinction between primitive and derived ideas
and propositions. Similarly to Frege, he acknowledged a degree of arbitrariness
in the selection of primitive propositions and also of primitive notions (1891a,
p. 26, fn. 1).

As a means of relieving arithmetic of the use of natural language and thus
eliminating all the ambiguities and inaccuracies introduced by the use of words
in the expression of mathematical concepts and proofs, Peano complemented
the basic linguistic elements of arithmetic with the formal resources provided

Dedekind (1888) that it was “quite useful” (1889, p. v; 103) to him and made a terminological
remark in which he alluded to Dedekind. However, in ‘Sul concetto di numero’ (1891c, p. 93),
Peano stated that his axioms of arithmetic were due to Dedekind. Later in this work Peano made
the following remark:

“Here (Peano 1891c) the number is not defined, but its fundamental properties are
stated. Dedekind defines the number instead, and specifically calls number what
satisfies the aforementioned conditions. Evidently the two things coincide.” (Peano
1891c, p. 94)

10AsGrattan-Guinness (2011, p. 135) claimed, a probable source for Peano’s vindication of rigour
was the process of the arithmetisation of analysis, which had Weierstrass as one of its main propo-
nents. Von Plato (2017, pp. 40–49, 54–57) has convincingly explained the influence of Grassmann’s
definitions by recursion in Peano’s presentation of arithmetic. In Arithmetices principia Peano ex-
plicitly acknowledged (Grassmann 1861) as a source for his proofs of arithmetic. See also (Lolli
2011).
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by logic. This complementation required the development of a logical language
and the establishment of the principles of logic. The use of logical language
and, specifically, logical connectives and quantification, made possible, one the
one hand, to formally define arithmetical notions, and on the other hand to
express the laws of arithmetic. On these grounds arithmetic could be formally
constructed as an axiomatic theory.

Peano used as a basis for his mathematical logic the calculus of classes and
the calculus of propositions developed by algebraic logicians11. However, un-
like algebraic logicians, Peano was reluctant to use arithmetical symbols in or-
der to express logical notions or relations between classes. He wanted to pre-
serve the specific meaning of arithmetical symbols and, at the same time, avoid
the confusions that would arise had they acquired, in addition to their math-
ematical meaning, a logical meaning. In Arithmetices principia Peano provided
separate lists of the symbols of logic and the symbols of arithmetic (1889, p. vi;
103). There is only one symbol which appeared in both lists, namely ‘=’. It was
first presented as a logical symbol expressing equality between propositions
(1889, p. viii; 105) and classes (1889, p. xi; 108). Then, the symbol of equality
was introduced as an arithmetical symbol and Peano warned about its ambi-
guity: “= means is equal to (this must be considered as a new sign, although it
has the appearance of a sign of logic)” (1889, p. 1; 113)12.

One of the most significant elements of Peano’s axiomatisation of arithmetic
is the clear separation of logical principles and arithmetical axioms13. In this
regard, he departed from the algebra of logic tradition. Peano considered the
principles of the calculus of classes to be part of logic, but he still distinguished

11Peano explicitly acknowledged that his logic was developed from the presentations of Boole,
Peirce and Schröder. See (Peano 1888, p. vii, fn. 7) and (Peano 1889, p. iv; 86, fn.). The influence
of Schröder is particularly clear in Peano’s first presentation of logic, contained in (1888, pp. 1–20).
See also (Grattan-Guinness 2011, pp. 136–139).

12Frege criticised several times Peano’s piecemeal definition of equality. See (Frege 1976, pp. 181–
185) and (Frege 1897, pp. 366–367; 238).
See also (Peano 1891b, pp. 9–10; 158), where Peanomade explicit remarks about the separation of

the symbols of arithmetic and those of logic. Another example is Peano’s introduction of the symbol
‘ V’, used to denote both the empty class and the absurd. In (1897a) Peano explicitly rejected to use
an arithmetical symbol such as ‘0’ for this purpose:

“The sign Vis the reversed initial of the word true [original French vrai] [. . . ]. Several
Authors, especially Boole and Mr. Schröder indicate the null class with the symbol
0; notation that we had to abandon so as not to confuse, in our formulas, the logical
symbols and the algebraic ones.” (Peano 1897a, p. 46)

13In Arithmetices principia Peano included four axioms in the list of the axioms of arithmetic that
expressed the basic properties of the relation of equality (1889, p. 1; 113). These axioms charac-
terised equality as a logical relation: an equivalence relation that also preserves the principle of
substitutivity of identicals. The four axioms involving equality were detached from the list of the
axioms of arithmetic and included among the logical principles in later presentations. See (Peano
1891c, p. 90) and (Peano 1898a, p. 1).
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them from the principles of sentential logic.

4 Peano’s early attempts to develop a logical calcu-
lus

In published work and personal correspondence Frege commented on Peano’s
works14. The main focus of Frege’s remarks was Peano’s notion of definition15.
In ‘Über die Begriffsschrift des Herrn Peano und meine eigene’ (1897) Frege
discussed in detail the basic components of Peano’s presentation of his mathe-
matical logic. Frege tookNotations de logique mathématique (Peano 1894) and the
first volume of Formulaire de mathématiques (Peano 1895a) (hereinafter, Formu-
laire) as representative of Peano’s position.

In his paper on Peano’s mathematical logic Frege failed to acknowledge the
importance of Peano’s axiomatisation of arithmetic. Most likely Frege’s logi-
cist thesis played a role in his account of Peano’s axiomatisation of arithmetic.
According to Frege’s logicism, if arithmetic has a set of axioms, they are ulti-
mately logical laws. In ‘Über formale Theorien der Arithmetik’ Frege stressed
the differences between geometry and arithmetic by appealing to the notion of
axiom:

“Herewith arithmetic is placed in direct contrast with geometry, which, as
surely no mathematician will doubt, requires certain axioms peculiar to it
where the contrary of these axioms – considered from a purely logical point
of view – is just as possible, i.e., iswithout contradiction.” (Frege 1885, p. 94;
112)

Even if the axioms of arithmetic were, in fact, logical laws for Frege, it was
still a mathematically remarkable fact that all theorems of arithmetic could be
derived from five axioms (i.e., nineminus the axioms that involve logical equal-
ity – see Footnote 13). This was actually connected to one of Frege’s method-
ological principles16.

14Peano then published part of this correspondence in Revue de mathématiques, of which he was
the editor. See (Frege 1896) and (Peano 1898b).

15See, for instance, (Frege 1903, pp 70–71, fn.).
16Frege did not comment – at least in what has been preserved in hisNachlaß – on the importance

of Dedekind’s definition of the system of natural numbers either. In fact, Frege’s remarks about
Dedekind (1888) in Grundgesetze are very similar in tone to his criticism of Peano (1893, pp. vii–
viii). It is not casual that Frege criticised bothDedekind’s andPeano’s presentations of arithmetic on
methodological grounds and, specifically, for their lack of a fully formalised characterisation of the
notion of proof. To rigorously settle the foundations of the laws of arithmetic was for Frege the core
of his endeavour in Grundgesetze, and the development of an inferential calculus was instrumental
for this aim.
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Moreover, Frege praised the expressive capabilities of Peano’s logical lan-
guage and contrasted it with those of Boole and Schröder – which, from Frege’s
perspective, were inadequate tools for the expression of arithmetical truths (1897,
pp. 370–371; 242). At the same time, Frege criticised Peano’s failure to provide
a full inferential calculus:

“In any case, less emphasis is placed upon strictness in conducting a proof,
and upon logical perfection, here [in (Peano 1895a)] than in my conceptual
notation [...]. That the conduct of proof is thrust into the background here
[in (Peano 1895a)] is due also to the absence of rules of inference, for the
formulae in Part I of Formulaire can offer no substitute for them. The ques-
tion here is simply how, from one of those formulae, or from two of them,
a new one is obtained.” (Frege 1897, pp. 366–367; 238)

According to Frege, Peano could not guarantee a fully rigorous treatment of
arithmetic if he did not provide the means to formalise proofs. All in all, Frege
was stressing the difference between amathematical calculus and an inferential
calculus, and accusing Peano of not having fulfilled his own demands of rigour
by failing to provide a complete system of rules of inference.

Two years before the publication of Frege’s 1897 paper, Peano published a
review to the first volume of Grundgesetze. Among other things, he mentioned
Frege’s stress on the rules of inference and offered the following critical re-
marks:

“The author [Frege] shows great concern over his rules of reasoning, which
he explains in ordinary language. When translated into symbols, these be-
come logical identities, all of which are contained in Part I of Formulaire [...].
The only work that can be done on these rules of reasoning is that of discov-
ering whether one rule is the equivalent of a whole combination of others;
and thus, continuing this analysis, one will arrive at the system of the most
simple rules, which in Formulaire Part I are called primitive propositions.”
(Peano 1895b, p. 127; 31)

This quotation captures Peano’s early position concerning logical proofs17.
He defended that the principles of reasoning and, specifically, the inference
rules, are expressed by laws of logic, which capture the deductive aspect of
a calculus of logic. This was supported by his interpretation of ‘ C’, a primi-
tive symbol of Peano’s mathematical logic. Peano wanted to take advantage of
the parallelism between the logic of classes and sentential logic and used ‘ C’ to

17See also (Peano 1894, p. 51), where Peano identified rules of reasoningwith logical propositions
and considered the former to be analogous to laws of algebra.
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express the relation of inclusion and the conditional, respectively. Moreover, al-
though he realised that the relation between the antecedent and the consequent
of a conditional is presented informally as a different relation to that between
premises and consequence in a logical derivation (properly, the relation of de-
ducibility), he still assumed that both relations could be conveniently expressed
using the same symbol. In Peano’s words:

“The sign Cbetween classes may be read ‘is contained in’, while between
propositions it is read ‘we deduce’. The fact that it may be read in several
ways does not prove that it has severalmeanings, but only that ordinary lan-
guage has several terms to represent the same idea. The term which would
better correspond to the sign Cin its various positions could possibly be
‘hence’, ‘ergo’.” (Peano 1896–1897b, p. 573; 197)

According to this interpretation of ‘ C’, Peano defended that no inference rule
was required if its content was expressed by the laws of logic and, ultimately,
by the primitive propositions of the calculus, i.e., the axioms of logic.

Peano’s view on the inference rules of a logical calculus is connected with a
polemic that has aroused in contemporary historical studies. In the Introduc-
tion to his translation of Arithmetices principia, van Heijenoort claims that in the
logical calculus presented by Peano “[t]here is [...] a great defect. The formulas
are simply listed, not derived, because no rules of inference are given” (1967b,
p. 84)18. In contrast, von Plato (2017, pp. 50–57) argues that Peano’s derivations
in Arithmetices principia are fully formal and consist in the successive applica-
tion either of Modus Ponens or instantiation19. Von Plato’s account focuses on
the derivation of Theorem (11) (Peano 1889, pp. 2; 113–114):

2 εN (11)

Proof:

P1. C: 1 εN (1)
1[a](P6). C: 1 εN . C. 1 + 1 εN (2)
(1)(2). C: 1 + 1 εN (3)
P10. C: 2 = 1 + 1 (4)
(4).(3).(2, 1 + 1)[a, b](P5) : C: 2 εN (Theorem)

Clearly, lines (1), (2) and (4) consist in the instantiation of axiomsP1, P6 and
definition P10, respectively. Substitutions are indicated with the following no-
tational system: (x, y, z)[a, b, c]φmeans that a, b and c are replacedwith x, y and

18(Goldfarb 1980, p. 179) and (Grattan-Guinness 2000, p. 228) defend similar positions.
19See also (von Plato 2014, pp. 243–246) and (von Plato 2018).
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z, respectively, in formula φ. Line (3) consists in the application of Modus Po-
nens to the results of (1) and (2). Even though Peano affirmed in his review to
Grundgesetze (1895b) that the principles of reasoning were incorporated in the
calculus as logical laws, in Arithmetices principia he neither mentioned Modus
Ponens as an inference rule nor included a corresponding logical law:

a . a Cb : C: b

in the list of propositions of logic (1889, pp. viii-ix; 105–106)20. However, line
(5) is not the result of the application of Modus Ponens to what has been de-
duced in previous lines of the derivation. In (3) and (4), Peano obtained 1 +

1 εN and 2 = 1 + 1 separately. In full rigour, he could not use these formulas
and the following instance of (P5):

2 = 1 + 1 . 1 + 1 εN : C. 2 εN

to apply Modus Ponens, for he did not deduce the antecedent of this formula,
2 = 1 + 1.1 + 1 εN, i.e., the conjunction of 2 = 1 + 1 and 1 + 1 εN. In order
to solve this issue, Peano would need a rule of introduction of the conjunction
(such as {p, q} ` p ∧ q), which could not be expressed in the language of his
mathematical logic as a logical law21.

More importantly, several theorems require a conditional proof. Let us con-
sider an example. Peano divided Theorem (13):

a, b, c, d εN . a = b . b = c . c = d . C. a = d (13)
20As I shall explain below, this logical law was a primitive proposition of the calculus of classes

Peano provided in (1891a, p. 27).
21Incidentally, Peano could have amended the proof of Theorem (11) in such a way that each

of its steps consisted either in an instantiation or the application of Modus Ponens. The follow-
ing derivation can be carried out using, besides Modus Ponens and instantiation, the logical laws
explicitly stated by Peano in Arithmetices principia:

Let p be 2 = 1 + 1, q be 1 + 1 εN and r be 2 εN:
P1. C

. 1 εN (1)
1[a](P6).

C

: 1 εN.

C

. q (2)
(1)(2).

C

. q [1 + 1 εN] (3)
P10. C

. p [2 = 1 + 1] (4)
(p, q, r)[a, b, c](L42).

C

∴ p

C

. q

C

r : = : pq

C

r (5)
(p

C

. q

C

r, pq

C

r)[a, b](L10).

C

: : p

C

. q

C

r : = : pq

C

r ∴

C

∴ pq

C

r.

C

: p

C

. q

C

r (6)
(5)(6).

C

∴ pq

C

r.

C

: p

C

. q

C

r (7)
(2, 1 + 1)[a, b](P5).(7) : C

: p

C

. q

C

r (8)
(4)(8).

C

. q

C

r (9)
(3)(9).

C

. r [2 εN] (Th.)
The fact that this derivation can be completed by appealing only to logical laws included in

Peano’s list of propositions (besidesModus Ponens and a rule of substitution) is independent of the
fact that Peano’s derivation needs to appeal to logical principles that he did not explicitly include
in the calculus.
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into Hypothesis (which corresponds to its antecedent) and Thesis (its conse-
quent). As a means to justify Theorem (13), he provided the schema of a proof
that included the Hypothesis as a premise and concluded in the following way:

{a, b, c, d εN . a = b . b = c . c = d} ` a = d.

In order to complete this derivation, a rule of introduction of the conditional
would be needed. Again, Peano neither included the corresponding principle
in the list of propositions of logic nor could he express such a principle in the
language of his mathematical logic.

Even though he explained the notions of theorem and axiom in Arithmetices
principia, Peano did not isolate a group of primitive propositions for the calculi
of classes and propositions22. In this work he only axiomatised arithmetic; the
principles of logic were listed without any distinction concerning their status
in the calculus. In ‘Formole di Logica Matematica’ Peano offered for the first
time a regimentation of the principles of logic and provided a list of primitive
propositions (1891a, pp. 25–26)23. In this short paper Peano included as primi-
tive propositions the following laws (which he called, respectively, P7 and P8)
(1891a, p. 27):

a . a Cb : C. b (7)

a Cb . b Cc : C. a Cc (8)

In the proofs of ‘Formole di Logica Matematica’ (1891a) P7 and P8 were
used either as logical axioms (i.e., as formulas of the language subject to substi-
tutions) or as principles of reasoning. However, the proofs of ‘Formole di Log-
ica Matematica’ (1891a) also required the application of inference rules that
were not even mentioned by Peano: introduction and elimination of the con-
junction, and introduction of the conditional. These inference rules systematise
argumentation techniques that are either implicit or common in mathematical
practice. However, what is at stake here is not the correctness of the proofs in-
cluded in Peano’s early works on logic, but his success in formalising inferences
and rigorously justifying logical reasoning.

Peano’s aim at expressing all relevant principles of reasoning as laws of logic
(leaving aside substitutions and, possibly, Modus Ponens)was legitimate in the

22Note that, althoughPeirce (1880) advanced towards an axiomatisation of the calculus of classes,
this calculus was first axiomatised by Schröder in the first volume ofVorlesungen über die Algebra der
Logik (1890, pp. 168–293) (hereinafter, Vorlesungen), one year after the publication of Arithmetices
principia. An axiomatisation of the calculus of propositions was contained in the second volume of
Vorlesungen (Schröder 1891, pp. 28–32, 52) and consisted in adding a new axiom to the axioms of
the calculus of classes.

23The terminology ‘primitive proposition’ and ‘theorem’ had been introduced by Peano before
1891 and applied to the principles of arithmetic. See, for instance, (Peano 1889, p. xvi).
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context of the construction of a deductive calculus. Had he included in the cal-
culus all logical laws that, once seen as principles of reasoning, were needed
in the proofs, his logical calculus could be seen as a deductive calculus and
Frege’s complaints about the rigour of Peano’s proofs would lose power. How-
ever, several proofs included in Arithmetices principia and ‘Formole di Logica
Matematica’ (1891a) require the application of principles of reasoning that nei-
ther were included in the calculus as logical laws nor – as I claim – could they
be formulated in the language of Peano’s mathematical logic.

5 The development of Peano’s notion of calculus

The logical system that Peano used as a basis for his early mathematical logic,
Schröder’s algebra of logic, was not intended for use as a deductive system. Al-
gebraic logicians developed their algebraic theory by means of the kind of rea-
soning that is used in anymathematical theory (especially, in algebra). Schröder
was convinced that a singlemathematical theory, the algebra of relatives –which
he presented in the third volume of Vorlesungen (1895), included the calculus
of classes and the calculus of propositions. It is therefore natural that Schröder
did not appreciate the convenience of justifying reasoning: he neither isolated
the logical principles from the principles of the algebra of relatives nor formally
characterised the notion of deducibility bymeans of a complete system of infer-
ence rules24. In this regard, Schröder’s approach was in contrast with Frege’s,
for whom a precise and rigorous formulation of the logical principles – basic
laws and inference rules – was a key priority both in his early and later presen-
tations of the concept-script.

However, Peano was not interested in studying the algebraic principles of
logic, as Schröder did. In fact, Peano disregarded algebraic laws in construct-
ing an axiomatic system of logic. Yet since he developed his logic of classes and
sentential logic based upon Boole’s, Peirce’s and Schröder’s calculi of classes
and calculi of propositions, he was not pressed to acknowledge that the formal-
isation of logical reasoning –whichwas instrumental for obtaining arithmetical
and logical theorems – required, besides a specific set of primitive propositions,
a complete system of inference rules. With the notion of mathematical calculus
in mind, in his early works on logic Peano was convinced that the formulation
of logical laws – seen as rules of transformation of formulas – was sufficient
to capture the principles of reasoning involved in a derivation. He did not ap-
preciate Frege’s inferential approach and failed to recognise that the chains of
inference that appeared in his early works on logic were not, as we saw, gapless.

24Concerning Schröder’s conception of logic and, specifically, his failure to isolate the logical
fragment of the algebra of relatives, see (Badesa 2004, pp. 53–65). See also (Bertran-San Millán
2020).
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Peano adopted in his presentations of mathematical logic the division –
which did not occur in Frege’s presentations of the concept-script – between
the calculus of classes and the calculus of propositions that characterised the
contributions to the algebra of logic tradition. From 1889 to 1891, Peano took
the calculus of propositions as primary and the calculus of classes as deriva-
tive. However, he inverted this order of precedence from Notations de Loqique
Mathématique (1894) onwards. In Part I of the second volume of the Formulaire
(1897a) Peano provided an axiomatisation of the calculus of classes and, follow-
ing Schröder’s practice, he did not formulate specific axioms for the calculus of
propositions. On the contrary, he used the axioms and propositions of the cal-
culus of classes and interpreted them as if they were formulated for sentential
logic25. Let us see an example. Peano included the following law:

a, b, c, d εK : C: ab Cc . ac Cd . C. ab Cd. (37)

in the calculus of classes (1897a, p. 5). As the antecedent a, b, c, d εK shows,
the letters of this proposition are interpreted as classes and thus the second,
third and fifth occurrences of the symbol ‘ C’ have to be interpreted as inclu-
sion between classes. However, in the proof of Proposition (505) (1897a, p. 16),
proposition (37) is used as a means to obtain a formula of the form pq Ct from
the formulas pq Cr and pr Ct, which requires to employ (37) as if it were formu-
lated in the calculus of propositions:

pq Cr . pr Ct . C. pq Ct,

where p, q, r and t are propositional letters and the first, the second and the
fourth occurrences of the symbol ‘ C’ must be interpreted as the conditional26.

Related to this, another prominent shortcoming for the development of a de-
ductive calculus in Peano’s mathematical logic was his treatment of the symbol
‘ C’. Fregewrote a lengthy comment on Peano’s use of this symbol, criticising the
latter’s decision to attach different meanings to it (1897, pp. 371–373; 243–244).
He distinguished four different uses of ‘ C’: the relation of inclusion between

25On Schröder’s interpretation of the axioms of sentential logic and their use in proofs see
(Badesa 2004, p. 26).

26Peano’s Proposition (505) is the following:

u ε a fb . c C

a .

C

. u ε c fb, (505)

where the Hp (or Hyp in other texts) is u ε a fb . c C

a. The relevant step – for our present purposes
– in the proof of (505) involves as premises:

1. Hp . x ε c . C

. x ε a.

2. Hp . x ε a . C

. xu ε b.

Peano proposed to apply (37) as a rule of reasoning in order to obtain:

3. Hp . x ε c . C

. xu ε b.

According tomy interpretation, p = Hp (i.e, p = u ε a fb . c C

a), q = x ε c, r = x ε a and t = xu ε b.
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classes, conditional, generalised conditional and the relation of deducibility.
Frege was aware that the association of several meanings to ‘ C’ was not a mat-
ter of confusion. However, the economy of symbols that the use of ‘ C’ implied
was for Frege a poor advantage if it diminished the clarity of the symbolism.
The aforementioned use of (37) in the proof of Proposition (505) is an indica-
tion that the ambiguity between different interpretations of ‘ C’ was not always
justified. Furthermore, the association of the conditional and the relation of de-
ducibility was for Frege an indication of Peano’s difficulties in recognising the
convenience of developing logic as a theory of inference.

Peano progressively modified the presentation of his mathematical logic
and began to systematise the relation of deducibility in his later works on logic.
In Part I of the second volume of the Formulaire he provided a list of inference
rules (1897a, p. 34), which were identified with laws of the calculus of classes
(and on some occasions were applied, as we have seen, as if they were formu-
lated for sentential logic). Two years later, in Part III of the second volume of the
Formulaire, Peano almost copied his presentation of the rules of reasoning from
Part I (Cfr. (1897a, p. 2)), but enlarged itwith significant additions (1899, p. 11).
First, although he still identified the rules of reasoning with specific laws of the
calculus of classes, he explicitly acknowledged that former expressed general
deductive relations that could be applied either to the the calculus of classes or
to the calculus of propositions. Second, he provided an informal formulation
of the following principle of reasoning: “[o]ne can unite true P [propositions]
to a Hyp [hypothesis], in the order one pleases, without changing the value
of the Hyp” (1899, p. 11). Since in conditional proofs the antecedent of the
conditional to be proved, i.e., its hypothesis, was used as a premise, this rule
can be seen as an introduction of the conjunction. The fact that Peano did not
identify a specific law of logic with this principle of reasoning can be seen as an
implicit acknowledgement that it played a role in the calculus but could not be
expressed in its language (see Section 4).

A further step was made in ‘Formules de Logique Mathématique’ (1900).
In this paper, Peano again provided a list of inference rules, but this time pre-
sented them as general rules of reasoning, not tied to a specific calculus. He
then associated each rule with an analogous rule specific for the calculus of
classes, which in turn was identified with a logical law. As a result, the calculi
of classes and propositions had a common set of inference rules, and in addi-
tion the former had a specific set of derived rules – based on logical laws. See,
for instance, Peano’s presentation of the rule he labelled ‘Syllogism’:

“Let p, q, r, s be propositions.
Syll, abbreviation of Syllogism, indicates the form

p ⊃ q . q ⊃ r . ⊃ . p ⊃ r.
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If the propositions are reduced to the form x ε a, where a is a Cls, the syllo-
gism is expressed by the P2 · 4 [a, b, c εCls . a ⊃ b . b ⊃ c . ⊃ . a ⊃ c]. But
we will apply Syll even when it is about P [propositions] not yet reduced
to the form x ε a.” (Peano 1900, p. 14)

Note that Peano’s approach still retained some of the ambiguity expressed
by the symbol ‘⊃’. Specifically, unless

p ⊃ q . q ⊃ r . ⊃ . p ⊃ r.

is read as an expression of the calculus of propositions (which would entail
that it no longer expresses the general form of an inference rule), the third oc-
currence of ‘⊃’ corresponds to the deducibility symbol, while the remaining
occurrences correspond to conditionals27.

This kind of presentation can be taken as a sign that Peano had abandoned
the practice of using laws of the calculus of classes as general rules of reason-
ing, as if they were formulated also for the calculus of propositions. This was
instrumental for a full formalisation of proofs. In fact, even though Peano still
provided sketchy indications of most proofs, which included only the most
prominent principles and inference rules involved, in ‘Formules de Logique
Mathématique’ he included the proof of a theorem of the logic of classes:

a, b, c εCls. b ⊃ c . ⊃ . ab ⊃ ac (3·5)

which contained all formal steps, and he also gave explicit indications of the
application of the inference rules (1900, pp. 17–18). The comparison between
this proof and those of Arithmetices principia is a good witness of the evolution
of Peano’s notion of calculus and the progress towards a proper deductive ap-
proach.

6 Concluding remarks

Despite the consensus regarding the association of Peano with the logical tradi-
tion initiated by Frege, there are some elements in Peano’s mathematical logic
that show a departure from core aspects of Frege’s conception of logic. In this
paper I focused on one specific topic in Frege’s and Peano’s contributions to
logic: the notion of logical calculus. I contrasted their views on this topic, con-
cluding that they developed significantly divergent conceptions.

Frege was pioneer among modern logicians in creating a logical calculus
that could be seen as a theory of inference. His insistence on the formalisa-
tion of the logical transformations performed in a derivation put him in stark

27A similar ambiguity can be found in Schröder’s presentation of the calculus of propositions in
the second volume of Vorlesungen (1891, pp. 28–32, 52). See (Badesa 2004, pp. 25–30).
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contrast with themethodology of algebraic logicians, whomaintained amathe-
matical notion of calculus. Peano’s early works on logic exhibited the proximity
of his notion of axiomatic calculus with that of algebraic logicians, particularly
Schröder. Although Peano disregarded the algebraic elements of Schröder’s
mathematical theory of logic, he did not immediately adopt a deductive ap-
proach by means of which he could fully regiment the proofs of his mathemat-
ical logic. I showed that some of the chains of inferences included in Peano’s
early works on logic were not completely free of gaps. Moreover, I argued that
Peano’s association of the conditional with the notion of logical consequences
showed his difficulties in fully overcoming Schröder’s algebraic approach to
logic.

Peano’s notion of logical calculus did not remain static. In his later works
on logic, he isolated for the first time a set of inference rules and stopped see-
ing them merely as reformulations of laws of the calculus of classes. I have
defended that this was instrumental for the development of a fully formalised
concept of proof, which in turn showed Peano’s progress towards a deductive
notion of calculus.

Acknowledgements

I am grateful to Calixto Badesa, Ansten Klev, Ladislav Kvasz, Gregory Landini
and Vera Matarese for their careful reading of earlier drafts. Thanks to War-
ren Goldfarb and an anonymous referee for comments, to the editors, and to
Michael Pockley for linguistic advice. The work on this paper was supported
by the Formal Epistemology – the Future Synthesis grant, in the framework of the
Praemium Academicum programme of the Czech Academy of Sciences.

References
Badesa, C. (2004), The Birth of Model Theory, Princeton University Press, Prince-
ton.

Badesa, C. and Bertran-SanMillán, J. (2020), Begriffsschrift’s logic. Forthcoming
in Notre Dame Journal of Formal Logic.

Bertran-San Millán, J. (2020), ‘Lingua characterica and calculus ratioctinator: The
Leibnizian background of the Frege-Schröder polemic’, Review of Symbolic
Logic pp. 1–35.

Dedekind, R. (1888), Was sind und was sollen die Zahlen?, Friedrich Vieweg,
Braunschweig.

17



Dudman, V.H. (1971), ‘Peano’s review of Frege’sGrundgesetze’, Southern Journal
of Philosophy 9, 25–37.

Frege, G. (1879), Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens, Louis Nebert, Halle. Reedition in Frege (1964), pp. 1–88.
English translation by T. W. Bynum in (Frege 1972, pp. 101–203).

Frege, G. (1885), ‘Über formale Theorien der Arithmetik’, Jenaische Zeitschrift
für Naturwissenschaft 19, 94–104. English translation by E. H. Kluge in (Frege
1984, pp. 112–121).

Frege, G. (1893), Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, Vol. I,
Hermann Pohle, Jena. English translation by P. Ebert and M. Rossberg in
(Frege 2013).

Frege, G. (1896), Lettera del Sig. G. Frege all’Editore. Letter to G. Peano dated
August 29, 1896. Published in 1898 in Revue de Mathématiques 6, pp. 53–59,
Reprinted in (Frege 1976, pp. 181–186).

Frege, G. (1897), ‘Über die Begriffsschrift des Herrn Peano und meine eigene’,
Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wis-
senschaften zu Leipzig: Mathematisch-physische Klasse 48, 361–378. English
translation by V. H. Dudman in (Frege 1984, pp. 234–248).

Frege, G. (1903), Grundgesetze der Arithmetik. Begriffsschriftlich abgeleitet, Vol. II,
Hermann Pohle, Jena. English translation by P. Ebert and M. Rossberg in
(Frege 2013).

Frege, G. (1964), Begriffsschrift und andere Aufsätze, Georg Olms, Hildesheim.
English translation by T. W. Bynum in (Frege 1972).

Frege, G. (1972), Conceptual Notation and Related Articles, Clarendon Press, Ox-
ford.

Frege, G. (1976), Wissenschaftlicher Briefwechsel, Felix Meiner, Hamburg.

Frege, G. (1984), Collected Papers on Mathematics, Logic, and Philosophy, Black-
well, Oxford.

Frege, G. (2013), Basic Laws of Arithmetic, Oxford University Press, Oxford.

Goldfarb, W. (1980), ‘Review to H. C. Kennedy, G. Peano, Selected Works of
Giuseppe Peano’, The Journal of Symbolic Logic 45, 177–180.

Grassmann, H. (1861), Lehrbuch der Arithmetik für höhere Lehranstalten, Adolph
Enslin, Berlin.

18



Grattan-Guinness, I. (2000), The Search for Mathematical Roots, 1870–1940,
Princeton University Press, Princeton.

Grattan-Guinness, I. (2011), Giuseppe Peano: a Revolutionary in Symbolic
Logic?, in Skof (2011), pp. 135–141.

Haaparanta, L., ed. (2009), The Development of Modern Logic, Oxford University
Press, Oxford.

Jourdain, P. E. B. (1914), Preface. In Couturat, L. (1914). The Algebra of Logic.
English translation by L. G. Robinson. Chicago: Open Court, pp. iii–xiii.

Lolli, G. (2011), Peano and the Foundations of Arithmetic, in Skof (2011),
pp. 47–66.

Peano, G. (1888), Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann,
preceduto dalle operazioni della logica deduttiva, Fratelli Bocca, Turin.

Peano, G. (1889), Arithmetices principia nova methodo exposita, Fratelli Bocca,
Turin. English translation by H. C. Kennedy in (Peano 1973, pp. 101–134).

Peano, G. (1891a), ‘Formole di Logica Matematica’, Rivista di matematica 1, 24–
31.

Peano, G. (1891b), ‘Principii di LogicaMatematica’, Rivista di matematica 1, 1–10.
English translation by H. C. Kennedy in (Peano 1973, pp. 153–161).

Peano, G. (1891c), ‘Sul concetto di numero. Nota I’, Rivista di matematica 1, 87–
102.

Peano, G. (1894),Notations de logique mathématique (Introduction au Formulaire de
mathématiques), Guadagnini, Turin.

Peano, G. (1895a), Formulaire de Mathématiques, Vol. I, Fratelli Bocca, Turin.

Peano, G. (1895b), ‘Recensione: Dr. Gottlob Frege, Grundgesetze der Arithmetik,
begriffsschriftlich abgeleitet, Erster Band, Jena, 1893’, Rivista di matematica 5, 122–
128. English translation by V. Dudman in (Dudman 1971, pp. 27–31).

Peano, G. (1896–1897b), ‘Studii di LogicaMatematica’,Atti della Reale Accademia
delle Scienze di Torino 32, 565–583. English translation by H. C. Kennedy in
(Peano 1973, pp. 190–205).

Peano, G. (1897a), Formulaire de mathématiques, Vol. II, §1: Logique mathéma-
tique, Fratelli Bocca, Turin.

Peano, G. (1898a), Formulaire de Mathématiques, Vol. II, §2: Aritmetica, Fratelli
Bocca, Turin.

19



Peano, G. (1898b), ‘Risposta ad una lettera di G. Frege, preceduta dalla lettera
di Frege’, Revue de Mathématiques 6, 60–61.

Peano, G. (1899), Formulaire de Mathématiques, Vol. II, §3: Logique mathéma-
tique. Arithmétique. Limites. Nombres complexes. Vecteurs. Dérivées. Inté-
grales, Bocca, Turin.

Peano, G. (1900), ‘Formules de LogiqueMathématique’,Revue deMathématiques
7, 1–41.

Peano, G. (1973), Selected works of Giuseppe Peano, Allen & Unwin, London.

Peirce, C. S. (1880), ‘On the Algebra of Logic’, American Journal of Mathematics
3, 15–57.

Schröder, E. (1890), Vorlesungen über die Algebra der Logik (exakte Logic), Vol. 1,
G. Teubner, Leipzig.

Schröder, E. (1891), Vorlesungen über die Algebra der Logik (exakte Logic), Vol. 2
(1. Abteilung), G. Teubner, Leipzig.

Schröder, E. (1895), Vorlesungen über die Algebra der Logik (exakte Logic), Vol. 3,
G. Teubner, Leipzig.

Skof, F., ed. (2011), Giuseppe Peano between Mathematics and Logic, Springer, Mi-
lano.

van Heijenoort, J. (1967a), ‘Logic as Calculus and Logic as Language’, Synthese
17, 324–330.

van Heijenoort, J., ed. (1967b), From Frege to Gödel, a Source Book in Mathematical
Thought, Harvard University Press, Cambridge.

von Plato, J. (2014), Elements of Logical Reasoning, Cambridge University Press,
Cambridge.

von Plato, J. (2017), The Great Formal Machinery Works: Theories of Deduction
and Computation at the Origins of the Digital Age, Princeton University Press,
Princeton.

von Plato, J. (2018), The Development of Proof Theory. The Standford Encyclo-
pedia of Philosophy (Winter 2018 Edition), Zalta, E. (Ed.). https://plato.
stanford.edu/archives/win2018/entries/proof-theory-development/.

JOAN BERTRAN-SANMILLÁN
Institute of Philosophy

Czech Academy of Sciences
Jilská 1, 110 00

sanmillan@flu.cas.cz

20

https://plato.stanford.edu/archives/win2018/entries/proof-theory-development/
https://plato.stanford.edu/archives/win2018/entries/proof-theory-development/
mailto:sanmillan@flu.cas.cz

	Introduction
	Frege's logical calculi
	Peano's axiomatic systems
	Peano's early attempts to develop a logical calculus
	The development of Peano's notion of calculus
	Concluding remarks

