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Abstract. In Principii di Geometria [1889b] and ‘Sui fondamenti della
Geometria’ [1894] Peano offers axiomatic presentations of projective
geometry. There seems to be a tension between two poles in Peano’s
account: on the one hand, the view that the basic components of geometry
must be founded on intuition, and, on the other, Peano’s advocacy of
the axiomatic method and an abstract understanding of the axioms.

By studying Peano’s empiricist remarks and his conception of the
notion of mathematical proof, and by discussing his critique of Segre’s
foundation of hyperspace geometry, I will argue that these two poles can
be understood as compatible stages of a single process of construction
rather than conflicting options.
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1. Introduction

During the last decades of the nineteenth century, foundational studies
became a major field in geometrical research. In Italy, the publication of
Fano’s translation into Italian [1889]—made at Segre’s request—of Klein’s
Vergleichende Betrachtungen über neuere geometrische Forschungen [1872]
(commonly known as the Erlangen program) bolstered foundational inves-
tigations. Pasch’s Vorlesungen über neuere Geometrie [1882] is also a key
point of reference in this regard.

The growing importance of foundational studies ran parallel to the central
role algebraic and projective geometry acquired in the last half of the century.
The analytic development of projective geometry pioneered by geometers
such as Plücker and Cremona made a pronounced impact on Italian scholar-
ship.1 Grassmann’s groundbreaking Ausdehnungslehre [1844; 1862] attracted
attention in Italy from the late 1850s.2 Klein’s two papers on non-Euclidean
geometry [1871; 1873] also played an important role. Furthermore, the effort
at providing coordinates for projective geometry exclusively on a geometrical
basis led by von Staudt was followed by De Paolis in ‘Sui fondamenti della
geometria proiettiva’ [1880–81].3

All in all, the intense developments to which geometry was subjected in
the second half of the nineteenth century became the fertile ground from

Date: June 30, 2022 (v1.1).
1See [Plücker, 1828–31], [Plücker, 1868] and [Cremona, 1873].
2On the Italian reception of Grassmann Ausdehnungslehre, see [Bottazzini, 1985, pp. 27–

34].
3Von Staudt’s Geometrie der Lage [1847] was translated into Italian by Pieri [1889],

again at the request of Segre.
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which the Italian school of algebraic geometry and Peano’s school could
blossom, gaining international renown.4

Peano’s work on geometry can be divided according into two main areas:
the development of a geometrical calculus and the axiomatization of elemen-
tary and projective geometry from a synthetic point of view. In this paper,
I will focus on this second aspect.5 Specifically, I will investigate Peano’s
axiomatizations in I Principii di Geometria logicamente esposti [1889b]
(hereinafter, Principii di Geometria) and ‘Sui fondamenti della Geometria’
[1894].

There seems to be a tension in Peano’s construction of geometry in these
two works. On the one hand, Peano insists that the basic geometrical
concepts and propositions must have an empirical foundation. On the other
hand, geometry starts from axioms, which cannot be attached to a single
interpretation. In fact, Peano highlights the abstract character of the terms
occurring in such axioms and argues that the demonstration of theorems
from these axioms must proceed exclusively by logical means.6

By studying Peano’s axiomatization of geometry, I will argue that the
tension can be dissolved if these two seemingly contradictory positions
are understood as compatible aspects of a single process of construction,
rather than competing options. Specifically, I will explain that each stance
corresponds to a specific phase in the construction of geometry. I will
describe these two phases, and charaterize their relationship by referring to
a dispute between Peano and Segre. Accordingly, I will first claim that for
Peano, the construction of geometry must rely on a pre-mathematical phase
determined by the selection of a minimal set of axioms and fundamental
concepts, which have to be verifiable by direct observation. Second, I will
argue that the formulation of the axioms entails a selection, rearrangement
and systematization of content given intuitively. I will claim that, although
there is a close connection between the content of the axioms and the nature of
the fundamental notions of geometry, the former do not completely determine
the latter. In Peano’s construction of geometry, there is a second phase,
properly mathematical, where rather than being attached to a single system
of objects as their sole interpretation, the axioms are understood as abstract
postulates.

A study of Peano’s criticism of Segre’s treatment of hyperspace geometry
will allow me to substantiate Peano’s abstract understanding of the axioms.
On the one hand, Peano’s opposition to a purely abstract construction of
geometry is motivated by its lack of empirical foundation, and hence relies on
his requirements regarding the first pre-mathematical phase. On the other

4For a panoramic view of nineteenth-century geometry, see [Gray, 2007]. On the
connection between the development of projective geometry and modern logic, see [Eder,
2021]. On the development of projective geometry in Italy, see [Avellone et al , 2002].

5On Peano’s geometrical calculus, see [Bottazzini, 1985] and [Borga et al , 1985, pp. 177–
198]. On the relationship between Peano’s geometrical calculus and the axiomatization of
geometry, see [Gandon, 2006] and [Rizza, 2009].

6Although some historical studies emphasize the abstract aspect in Peano’s construction
of geometry (see [Kennedy, 1972]), others have observed the tension between empiricism
and an abstract approach (see [Bottazzini, 2001, pp. 288–290], [Avellone et al , 2002,
pp. 378–386], [Gandon, 2006, p. 253]). [Rizza, 2009] also aims at dissolving this apparent
tension.
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hand, Peano’s abstract conception of postulates, in the second phase, can be
better understood by alluding to two related notions of purity of method.
Peano’s advocacy of synthetic geometry, and thus for the independence of this
discipline from metric considerations, is closely connected with his conception
of the relation between the means of proof of theorems and their content.
In Peano’s view, the content of geometrical laws is not determined by their
informal wording, but rather by the deductive relations they establish with
the axioms. This indicates that, in the properly mathematical phase, the
specific meaning conveyed by these laws becomes irrelevant. From this stance,
I will argue that Peano’s abstract axiomatic approach can be framed within
deductivism. In fact, deductivism squares in a natural way with Peano’s
notions of purity and his understanding of mathematical proofs regimented
by logical means.

This paper is organized into three parts. In the second section I will
characterize Peano’s understanding of the basic concepts of geometry and
the requirement that they be empirically-founded. In the third section, I will
explore Peano’s critique of Segre’s hyperspace geometry in order to contrast
the former’s empiricist stance with the latter’s purely abstract approach. I will
also describe Peano’s conception of the content of geometrical propositions,
and give his view on the nature of Desargues’s theorem. This conception of
content will inform, in the fourth section, Peano’s views on the process of
demonstration of geometrical propositions. From this standpoint, I will offer
an explanation of Peano’s abstract understanding of the axioms.

2. Empirical foundation of geometry

Peano’s conception of the construction of a mathematical theory relies on
a distinction between undefined and derived notions, and between unproven
propositions, namely axioms or postulates, and theorems. In ‘Sui fondamenti
della Geometria’ the undefined notions, the most basic concepts of geometry,
are called ‘primitive notions’ [1894, p. 116].7 Peano states that the primitive
notions must be “very simple ideas, common to all men” and “reduced to a
minimum number” [1894, p. 116].

Both in Principii di Geometria [1889b, p. 77] and in ‘Sui fondamenti
della Geometria’ [1894, p. 119], Peano states that the concepts of point and
straight segment are the primitive notions of geometry. Specifically, the
class of points 1 or p (as it is represented in Principii di Geometria and
‘Sui fondamenti della Geometria’, respectively), and the segment formation
operation between two points (ab is the class of points that lie between a
and b and is taken as a segment) are the fundamental concepts of Peano’s
construction of elementary geometry.8

7Unless a reference to an English translation is included after a slash, all quotations
from the sources are translated by the author. Page numbers refer to the most recent
edition of the source or translation listed in the Bibliography.

8Although, strictly speaking, the binary segment formation operation is a primitive
notion, Peano often refers to it as a ternary relation of incidence between a point and
a segment, and represents it as ‘c ϵ ab’ (see [Peano, 1889b, p. 61]). In fact, in [Peano,
1894, p. 119], Peano makes it explicit that instead of reading ‘c ε ab’ as ‘c is a point of the
segment ab’, he prefers to read it as ‘c lies between a and b’. Note however that ‘ϵ’ (or ‘ε’
in [1894]) is Peano’s membership relation symbol and ‘ab’ is an individual term that refers
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The primitive notions of geometry are not defined, but Peano is very
clear about the need to provide a secure grounding for them. Peano’s claim
that the primitive notions are known to any geometer [1894, p. 116] can be
linked to his idea that they are intuitive [1891a, p. 67]. In fact, Peano states
that they must be acquired from experience [1894, p. 119] and that their
properties are “experimentally true” [1889b, p. 56].

Besides the requirement that the primitive notions be acquired from
experience, Peano also considers some methodological principles that are
involved in the selection of these concepts. Attributing simplicity to the
primitive notions is coherent with the idea that any other geometrical concept
has to be defined in terms of them. In addition, precision and the reduction
of the number primitive notions to the smallest possible are some of the
most most explicit methodological principles in Peano’s presentations of
logic, geometry or arithmetic (see, for instance, [1889a, p. 21]/[1973, p. 102],
[1889b, p. 78] and [1895, pp. 191–192]/[Dudman, 1971, pp. 28–30]).

Relying on an undisputed intuitive basis, simplicity, minimality, and
precision guide Peano’s selection of primitive notions. In ‘Sui fondamenti
della Geometria’, he rules out the possibility of assuming the notion of space
as primitive [1894, p. 117]. In Peano’s view, the notion of space is not, strictly
speaking, necessary, and such an assumption moreover requires us to add
further primitive notions that constitute space’s common attributes, namely
homogeneity, infinitude, divisibility, immobility, etc., which goes against the
criterion of simplicity. Besides, the notion of line, surface and solid are not
precise enough for a systematization of the intuitive basis of geometry, and
thus are too indeterminate to be considered primitive [1894, pp. 117–118].
Instead, Peano proposes using the notions of straight line, plane and specific
solid figures, since they can be defined in terms of classes of points and
segments.

In ‘Sui fondamenti della Geometria’, Peano takes pride in having con-
structed projective geometry with two primitive concepts, that is, one less
than those of Pasch’s presentation:

Pasch, in his important book Vorlesungen über neuere Geometrie

(Leipzig, 1882), developed Projective Geometry [Geometria di Po-

sizione] assuming only three primitive concepts, namely the point,

the rectilinear segment and the finite portion of a plane. But the

third of these concepts can be reduced to the previous ones by

assuming as the definition of the plane, or a part of it, one of its

well-known generations [generazioni ]. Therefore, having admitted

the two concepts, point and rectilinear segment, we can define

all the other entities, and develop the whole Projective Geometry

[Geometria di Posizione]. [Peano, 1894, p. 119]

Peano pays much attention to definitions in his construction of geometry,
and to the fact that any derived notion can be nominally defined by means of
primitive notions using logical symbolism. The formal resources provided by
the language of his mathematical logic are instrumental in the formulation
of precise and rigorous definitions. However, Peano does not develop a

to the result of applying the segment formation function to a and b. See [Marchisotto,
2011].
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systematic account of the indefinability of the primitive notions. Such an
account would prove to be an important issue in Peano’s close mathematical
environment: in ‘Essai d’une théorie algébraique des nombres entiers, précédé
d’une introduction logique à une théorie déductive quelconque’ [1901], Padoa
informally characterizes the indefinability—in his terms, irreducibility—of a
system of primitive notions with respect to a set of postulates.9

Despite the methodological principles that guide the establishment of
a set of basic concepts, Peano acknowledges that there is some degree of
arbitrariness in his selection. In the context of a specific theory, as long as
the primitive notions make it possible to define all derived notions, there
is no need to rely on a specific choice. According to Peano, if by means
of a and b we can define c, and by means of a and c we can define b, then
it is just a matter of preference to decide whether a and b, or a and c are
the primitive notions [1889b, p. 78]. Nevertheless, this arbitrariness has its
limits. First, as Peano puts it in Principii di Geometria, “the signs 1 and
a′b10 (point and ray) could have been assumed instead of the signs 1 and ab
(point and segment); this would not have been possible assuming the point
and the straight line as undefined concepts” [1889b, p. 78].11

Second, Peano’s remarks on arbitrariness are framed in a single theory—
specifically, elementary geometry. Assuming the intuitive basis from which
geometry is constructed, Peano does not seem to consider the possibility of
building different geometries which might have conflicting sets of primitives.
Late nineteenth-century empiricism in geometry is nuanced with respect to
the role of intuition in the basic components of geometrical theories. In
this regard, Peano’s account diverges from Klein’s. In a lecture delivered
in September 2, 1893, Klein distinguishes between näıve intuition, which is
inexact, and refined intuition, which comes as the result of an axiomatization
[1911, pp. 41–42]/[Ewald, 1996, II, p. 959]. In Klein’s view, the inexactitude
of spatial näıve intuition can be organized and systematized in different
ways, and can actually form the foundation of different and equally justified

9I am indebted to an anonymous referee for bringing Padoa’s account of the irreducibility
of primitive notions into my attention.

10The ray function ′ determines the class of points that lie beyond a point b relative to
a point a. In ‘Sui fondamenti della Geometria’ [1894, p. 120], Peano defines a′b as follows:

a, b, c ε p .

C

: c ε a′b . = . b ε ac.

Note that, using a′b, ab could be defined:

a, b, c ε p .

C

: c ε ab . = . b ε a′c.

See also [Peano, 1889b, §2, p. 61, Prop. 1].
11In ‘Sui fondamenti della Geometria’ [1894, p. 126], the concept of straight line (in

Italian, retta) is defined as follows:

a, b ε p . a �= b .

C

. retta(a, b) = b′a ��ιa ��ab ��ιb ��a′b,

where ιa is the class of objects that are equal to a (i.e., the singleton of a).
Following [Moore, 1902, p. 144], Marchisotto [2011, p. 163] suggests that not only

simplicity is behind Peano’s choice of the segment formation operation as a primitive
notion; the notion of segment is more fundamental than the concept of line with respect
to a set of postulates based on spatial intuition. In their view, the fundamentality of the
notion of segment also played a role in Peano’s choice.
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geometries [1890, p. 572].12 Peano does not draw such a distinction on
intuition, and he does not suggest that the intuitive content from which the
primitive notions of geometry are extracted is inexact. After all, as he states
in ‘Sui fondamenti della Geometria’, the primitive notions are known by
anyone who is familiar with geometry, and must already have terms that
refer to them [1894, p. 116]. The concepts of point and straight segment
constitute, with the axioms, the basis of Peano’s construction of elementary
geometry. The same intuitive foundation remains for any specific theory
derived from elementary geometry, including projective geometry.13

Assuming that the primitive notions cannot be defined, Peano refuses
to even offer descriptions or elucidations about their nature. In Principii
di Geometria, he affirms that concerning the primitive notions,“only [their]
properties will be stated” [1889b, p. 78]. These properties are expressed in
the axioms. As Peano puts it in ‘Sui fondamenti della Geometria’:

[I]t will be necessary to determine the properties of the undefined

entity p [point], and of the relation c ε ab [c lies between a and b], by

means of axioms or postulates. The most elementary observation

shows us a long series of properties of these entities; we just have

to collect these common notions [cognizioni ], order them, and

enunciate as postulates only those that cannot be deduced from

simpler ones. [Peano, 1894, p. 119]

Peano’s remarks that the primitive notions of geometry are acquired from
experience, and that the axioms are the result of a systematization of the
properties of the fundamental concepts, stand at the core of his construction
of geometry. The combination of his specific choice of primitive notions
and axioms constitute an analysis of the intuitions of space. This intuitive
basis is selected, rearranged and regimented following, as we have seen,
methodological criteria. The adoption of the axiomatic method plays a
crucial role in this analysis, as it makes possible to systematically collect
the most elementary properties of the notions of point and straight segment
and build geometry in such a way that the deductive dependencies between
axioms and theorems are made explicit.

Although Peano states that the axioms of geometry express the simplest
properties of the primitive notions, they cannot be considered explicit def-
initions of these concepts. As stated above, the primitive notions are left
undefined and geometry has to be constructed from axioms. Accordingly,
although there is a close connection between the content of the axioms and
the nature of the notions of point and straight segment, the former do not

12I am indebted to an anonymous referee for suggesting me to consider Klein’s account
of intuition.

13In [1889b] and [1894], Peano’s goal is to put forward a synthetic construction of
geometry, one that does not rely on any non-geometrical notion. This could be seen as a
specific way of systematising the kind of intuition that is relevant in geometry. However,
Peano adopts an alternative way of systematising intuitive content in his work on the
geometrical calculus (see, for instance, [1888] and [1898]). The geometrical calculus
establishes a linear algebra and ultimately rests on the notion of number. On Peano’s two
ways of organising spatial intuitions, see [Rizza, 2009, p. 357]. On the relationship between
Peano’s geometric calculus and his synthetic axiomatization of elementary geometry, see
[Gandon, 2006].
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completely determine the latter. As Peano states, the axioms articulate a
selection of the properties of the primitive notions, and as we will see in
Section 4, there are multiple systems which can share the structural features
stated in the axioms.14 This specific relationship between the primitive
notions and the axioms paves the way for an abstract understanding of the
latter. I will consider such an understanding in Section 4.15

That said, Peano is not interested in constructing geometry as an abstract
theory. The axioms must be founded on direct observation. Such a connec-
tion between the axioms and intuitive content is what makes them truly
geometrical. In Peano’s words:

[A]nyone is allowed to allow those hypotheses that they want, and

develop the logical consequences contained in those hypotheses. But

for this work to deserve the name of Geometry, those hypotheses

or postulates must express the result of the simplest and most

elementary observations of physical figures. [Peano, 1894, p. 141]

As the result of an analysis of spatial intuition, the axioms of geometry
articulate the basic properties of the three-dimensional space. Of the sixteen
axioms of elementary geometry that are formulated in Principii di Geometria,
axioms XV and XVI bear witness to Peano’s empiricist stance:16

(XV) p ϵ 3 . C∴ a ϵ 1 . a �ϵ p : �=a

V.

(XVI) p ϵ 3 . a ϵ 1 . a �ϵ p . b ϵ a′p .x ϵ 1 : C:

x ϵ p . ��. ax ��p �= V. ��. bx ��p �= V.

According to Peano, Axiom XV can be read as “Given a plane, there are
points that are not contained in it”, and Axiom XVI, “Given a plane, and
two points from opposite sides of the plane, either each point of space lies on
the given plane, or one of the segments that connect it to the given points
meets the plane” [1889b, p. 89]. Peano concludes that Axiom XVI states
that the space is three-dimensional. Although, as we will see in the next
section, Peano considers the possibility of a higher-dimensional space, he
does not include any axiom in his construction of elementary geometry that
postulates the existence of high-dimensional spaces. In fact, as we will see in
Section 3.3, Axiom XVI would have to be dropped in an axiom system of a

14On a structuralist understanding of Peano’s axiomatization of geometry, see [Bertran-
San Millán, 2022].

15Rizza [2009] suggests a similar idea. In his words:

[T]he need to systematically organize spatial intuition around certain
fundamental concepts can give rise to the concept of a formal structure
as a type of organization of a given intuitive content. The choice of
fundamental concepts and the articulation of geometry on their basis is
carried out through the axiomatic method. [Rizza, 2009, p. 366]

16Note that 3 is the class of classes of points that form a plane;

V

, depending on the
context, is the empty set (Axiom XVI) or a propositional constant that means the absurd
(Axiom XV); and a formula that contains an equality symbol with a letter attached to it
as a subscript is the universal quantification of a biconditional.
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four-dimensional space. Had Peano understood his axiom system as a purely
abstract structure, this limitation would not be justified.17

Furthermore, in ‘Sui fondamenti della Geometria’, Peano considers the
proposition “Two straight lines lying in the same plane always have a point
in common” as a possible axiom of projective geometry. He rejects such a
possibility because this proposition is “not verified by observation, and it is
indeed in contradiction with Euclid’s theorems” [1894, p. 141]. As Peano
states, “projective Geometry originates from the postulates of elementary
Geometry and, by means of appropriate definitions, it introduces new entities,
called ideal points (both in Euclidean and non-Euclidean geometry)” [1894,
p. 149]. He explicitly claims that by means of these new entities all the
axioms of elementary geometry are satisfied. All in all, for Peano projective
geometry is derived from elementary geometry through definitions, and thus
all the axioms of the former must be confirmed by direct observation.18

In Principii di Geometria [1889b, pp. 84–85], Peano analyses the content
of three of Pasch’s axioms from Vorlesungen über neuere Geometrie [1882]
and establishes correspondences between his axioms of linear geometry and
Pasch’s. In ‘Sui fondamenti della Geometria’ [1894, p. 120] Peano again
acknowledges that his axioms of linear geometry essentially correspond to
Pasch’s.19 Besides the postulates of linear geometry, Peano also shares with
Pasch the requirement of an empiricist foundation of geometry.20 Pasch’s
empiricism is idiosyncratic, but commonalities with Peano’s account can
nonetheless be found. In Vorlesungen über neuere Geometrie [1882, p. 3],
Pasch claims that geometry is a natural science. He also offers a characteri-
zation of the basic concepts that echoes Peano’s:

The basic concepts [Grundbegriffe] are not defined ; no explanation

is able to replace that means which alone eases the understanding of

those simple concepts that cannot be traced back to others, namely

the reference to suitable physical objects [geeignete Naturobjecte].

[Pasch, 1882, p. 16]

As we will see in the next section, Peano also shares the reservations
expressed by Genocchi—with whom Peano collaborated as assistant during
the first years of the 1880s—concerning a purely abstract foundation of
geometry.

17On the idea that Peano axiomatizes the properties of a three-dimensional space, see
[Rizza, 2009, pp. 362–364].

18Similarly, Pasch reflects on the addition of an axiom of continuity, but then rejects
such a possibility on the grounds that it is inconsistent with his empiricist stance [1882,
pp. 125–127]. I am indebted to an anonymous referee for suggesting me to consider Pasch’s
reflection on the axiom of continuity.

19See [Gandon, 2006, pp. 284–287] for a comparison between Pasch’s [1882] axioms of
projective geometry and Peano’s [1889b] axioms of elementary geometry. See also [Borga
et al , 1985, pp. 206–211].

20On Pasch’s empiricism and, in general, on his philosophy of mathematics, see [Schlimm,
2010]. On Pasch’s influence in Peano’s axiomatization of geometry, see [Borga et al , 1985,
pp. 52–54]. Gandon [2006] offers an alternative account of Peano’s empiricism and its
relationship with Pasch’s Vorlesungen über neuere Geometrie.
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3. Peano’s critique of Segre’s geometry of hyperspaces

Although there is textual evidence concerning Peano’s position on the
foundations of geometry, his views can be better understood if they are
juxtaposed with alternative conceptions of the basis of this mathematical
theory. Peano’s empiricism can thus be put into an explanatory context,
especially on those occasions when he criticizes a purely abstract foundation
of geometry. In fact, Peano’s criticism is instrumental in understanding
the role of an empirical foundation rather as a guiding principle in the
axiomatization of geometry than an ad-hoc imposition. Moreover, he makes
an effort to explain his views on the abstract character of geometrical proofs
when he detects that certain mathematical reasoning lacks rigour. On those
occasions, Peano substantiates the claim that, in addition to this empirical
foundation, there is a stage in the construction of geometry where it can
be understood as an abstract discipline. The study of Peano’s polemical
exchange with Segre will serve as a transition between my accounts of the
former’s empiricism and the abstract nature of mathematical proofs.

3.1. Segre’s hyperspace geometry. As one of the driving forces behind
the Italian school of algebraic geometry, Segre was highly influential in
the popularization of Klein’s Erlangen program in Italy.21 He also made
important contributions to hyperspace projective geometry and algebraic
geometry. For the purposes of this paper, I will focus on Segre’s work on
the foundations of hyperspace geometry, which was heavily influenced by
the works of Clebsch, Veronese and D’Ovidio.22 Segre did not follow the
axiomatic method and his foundational work on geometries of n-dimensions
was constructed upon an abstract notion of point.

In ‘Studio sulle quadriche in uno spazio lineare ad un numero qualunque
di dimensioni’ Segre introduces the notion of point as follows:

Let us consider any linear space of n− 1 dimensions. We will call

point each of its elements, whatever their nature (which is of no

importance to us). [Segre, 1883, p. 39]

A point is presented just as an n-sequence of real numbers and Segre
rejects any reflection upon its nature. In fact, Segre dismisses intuitions of
space and, as a consequence, all linear spaces of a given number of dimensions
are identified:

All linear spaces with the same number of dimensions, whatever

their elements are, can be regarded as identical to each other, since,

as we have already noted, in studying them the nature of those

elements is not considered, but only the property of linearity and

the number of dimensions of the space formed by the elements

themselves. [Segre, 1883, p. 46]

Although Segre’s characterization of a linear space [1883, p. 38] does not
meet contemporary standards of rigour (nor, in reality, even Peano’s)23, its

21On Segre’s leadership of the Italian school, see [Conte; Giacardi, 2016] and [Luciano;
Roero, 2016].

22On Segre’s contributions to the foundations of geometry, see [Brigaglia, 2016].
23On a comparison between Segre’s and Peano’s definitions of a linear space, see

[Avellone et al , 2002, pp. 375–377].
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abstract character is fundamental to the incorporation of algebraic tools into
geometry and, the characterization of the relationships between linear spaces
of different dimensions. It is at the essence of Segre’s notion of linear space
that, as he puts it in in ‘Su alcuni indirizzi nelle investigazioni geometriche’,
“every space is contained in a higher one; and in the latter we may seek for
forms which will simplify the study of given forms in the former” [1891a,
p. 63; 465].24

Segre published a long paper addressed to students, ‘Su alcuni indirizzi
nelle investigazioni geometriche’ [1891a], in the first volume of Rivista di
matematica. Despite the introductory and general character of the paper,
it triggered an unusual response from Peano, who was the editor and one
of the founders of the journal. Peano placed his ‘Osservazioni del Direttore
sull’articolo precedente’ [1891a] immediately after Segre’s paper in the same
volume of Rivista di matematica. Segre’s reply [1891b] was also published,
and this in turn prompted Peano’s final reaction [1891b].25

The dispute sparked by Peano is mainly concerned with mathematical
rigour and the use, in geometrical works, of principles lacking solid demon-
stration. However, Peano also criticizes Segre’s construction of hyperspace
geometry, and this will be the focus of my discussion in this section. In
particular, I will consider the two main aspects of Peano’s critique: on the
one hand, the lack of empirical character of basic propositions and prim-
itive notions of a foundational work on geometry; and, on the other, the
unjustified analogical use of n+ 1-dimensional geometry to obtain results of
n-dimensional geometry.

3.2. The abstract foundation of hyperspace geometry. In ‘Osser-
vazioni del Direttore sull’articolo precedente’, Peano insists on some ideas
that he had suggested in Principii di Geometria and would develop in ‘Sui
fondamenti della Geometria’. Specifically, in his first reaction to [Segre,
1891a], Peano puts forward his claim concerning the empirical character of
the axioms of geometry. He suggests that geometry cannot be built upon “hy-
potheses contrary to experience, or [...] hypotheses which cannot be verified
by experience” [1891a, p. 67].

Peano then elaborates on this view and suggests that there is a pre-
mathematical phase in which the axioms are selected and formulated:

Each author can assume those experimental laws that they please,

and can make those hypotheses that they like best. The good

choice of these hypotheses is very important in the theory to be

developed; but this choice is made by way of induction, and does

not belong to mathematics. Having made the choice of the starting

point, it is up to mathematics (which, in our opinion, is a perfected

logic) to deduce the consequences; and these must be absolutely

24It is worth mentioning that other prominent members of the Italian school of algebraic
geometry did not share Segre’s point of view and argued for empiricism. Veronese, whose
work on hyperspace geometry influenced Segre, advocated for using empirically-grounded
basic concepts [1891, pp. 611–612].On Veronese’s work on the foundations of geometry, see
[Cantù, 1999]. See also [Avellone et al , 2002, pp. 380–385].

25On the polemic between Peano and Segre, see [Manara; Spoglianti, 1977], [Borga et al ,
1985, pp. 242–244], [Bottazzini, 2001, pp. 553–555], [Avellone et al , 2002, pp. 372–385].
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rigorous. Whoever states consequences that are not contained in

the premises might make poetry, but not mathematics. [Peano,

1891a, p. 67]

These remarks complement the picture laid out in the previous section
concerning the establishment of the axioms of geometry. For Peano, the
foundation of geometry begins with a stage where the primitive notions are
selected. The properties of these primitive notions are obtained by direct
observation, and they are rearranged and systematized in a list of axioms.
The axioms can be understood as experimental because they state the basic
properties of the primitive notions, which are obtained from experience.
Therefore, in Peano’s view, the result of direct observation is not imposed
upon a set of abstract axioms at a later stage; it is inherent in these axioms
that they select, rearrange and regiment intuitive content. Once this pre-
mathematical analysis has produced a specific list of axioms, it is followed by
mathematics proper, which consists in the definition of derived notions and
the demonstration of theorems. In the next section I will evaluate Peano’s
claim that mathematics is “a perfected logic”.

With these assertions alone, Peano is ready to discredit Segre’s foundations
of hyperspace geometry, viewing them as not genuinely geometrical. If a point
is characterized just as an n-sequence of numbers, the intuitive character
attached to this concept is completely lost. Moreover, the primitive notions
of geometry are no longer independent of the notion of number and thus the
boundaries between geometry and analysis—which relies on the concept of
number—become blurred.26 In Peano’s words:

If any group of n variables is called a point [. . . ], then it is well

known that any discussion on the postulates of Geometry ceases;

the theories that are deduced develop the consequences of the

principles of arithmetic, and not of those of geometry; every result

thus obtained is independent of any geometric postulate. [Peano,

1891b, p. 157]

Peano advocates for an autonomous foundation of geometry, one which
does not rely on non-geometrical notions. This is coherent with his synthetic
approach in the construction of geometry, and implicitly encapsulates an idea
of purity of method.27 For Peano, Segre’s foundation of hyperspace geometry
is not pure and, moreover, lacks an account that connects the basic concepts
with our intuitions of space.28

26As Rizza [2009, p. 357] suggests, Peano does not rule out n-dimensional linear spaces
because they are used in ordinary mathematics; he does not accept them in geometry,
since their existence is not supported by our intuitions of space.

27On the notion of purity of method, see [Arana, 2008], [Detlefsen, 2008], [Detlefsen;
Arana, 2011].

28Peano’s empiricism and his critique of Segre’s abstract foundation of n-dimensional
geometries can be connected with the views of Genocchi, Peano’s predecessor as the chair
of infinitesimal calculus in Turin. In [1891, pp. 614-615, fn. 2], Veronese reports Genocchi’s
dismissive and harsh judgement of hyperspace geometry, which can be found in [Genocchi,
1877, pp. 388–389]. On Genocchi’s views of hyperspace geometry and the polemic between
Peano and Segre, see [Manara; Spoglianti, 1977].
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3.3. An axiomatic construction of hyperspace geometry. Let us now
turn to the second aspect of Peano’s critique of Segre’s construction of
hyperspace geometry. In ‘Su alcuni indirizzi nelle investigazioni geometriche’,
Segre suggests three possible foundations of hyperspace geometry, which in
turn correspond to three possible ways of defining points in an n-dimensional
linear space [1891a, pp. 59–61]/[1904, pp. 460–463]. The first is the one
already considered, and takes points to be “any system of values of n
variables (the coördinates of the point)” [1891a, p. 59]/[1904, p. 460]. The
second follows Plücker and characterizes points as “geometric forms of
ordinary space, such as groups of points, curves, surfaces” [1891a, p. 60]/[1904,
p. 461]. Finally, according to the third option, points in hyperspace are
characterized as ordinary points, but “we omit the postulate concerning the
three dimensions, and consequently modify some of those referring to the
straight line and plane” [1891a, p. 60]/[1904, p. 462].

Concerning the first option, Segre already anticipates Peano’s critique
that it results in an algebra of linear transformations and it is thus no longer
genuine geometry [1891a, p. 59]/[1904, p. 461]. However, he makes it clear
that this is not an issue for him, since, after all, “it is mathematics that is
being made” [1891a, p. 59]/[1904, p. 461, fn. 2]. In his response to Segre,
Peano only considers Segre’s third possible foundation, and it is on this
matter that he levies his critiques.

Peano describes his proposal of an axiomatic construction of a four-
dimensional geometry as follows:

To move from the 3-dimensional space to the 4[-dimensional space],
it is necessary to eliminate the 16th postulate, and then, without
modifying those referring to the straight line and the plane, to
admit the postulate, analogous to [postulates] 2, 7, 12, 15:

A] There are points outside ordinary space.

It follows as a consequence [. . . ] that, in this way, every proposition

proved true using the 4-dimensional space ceases to hold in the

3-dimensional space, since it is shown to be a consequence of

postulates 1–15 and postulate A, and it is not shown to be a

consequence of the postulates of elementary geometry alone. [Peano,

1891a, p. 68]

In Principii di Geometria, sixteen axioms establish the basis of elementary
geometry.29 Peano suggests axiomatizing the four-dimensional space by
means of axioms I–XV and axiom A. In the aforequoted passage, he refers

29In an Appendix, Peano also formulates a seventeenth axiom which postulates the
continuity of the straight line [1889b, p. 90].
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to Axioms II, VII, XII and XV:30

a ϵ 1 . C∴x ϵ 1 .x �= a : �=x

V.(II)

a, b ϵ 1 . a �= b : C. a′b �= V.(VII)

r ϵ 2 . C∴x ϵ 1 .x �ϵ r : �=x

V.(XII)

p ϵ 3 . C∴ a ϵ 1 . a �ϵ p : �=a

V.(XV)

Axiom II states that given any point a, there are points different from a.
Axiom VII states that given two points a and b, if they are different, then
the ray a′b is non-empty (and thus there are points which lie in a′b). Axiom
XII states that given a line r, there are points which do not lie on r. As
indicated in the previous section, Axiom XV states that given a plane p,
there are points which do not lie on p. These axioms are all existential and
thus, as Peano states, analogous to the suggested axiom A; they postulate
the existence of points that do not meet certain conditions.

Then, as a means of axiomatizing a four-dimensional space, Peano also
proposes eliminating Axiom XVI:31

(XVI) p ϵ 3 . a ϵ 1 . a �ϵ p . b ϵ a′p .x ϵ 1 : C:

x ϵ p . ��. ax ��p �= V. ��. bx ��p �= V.

According to the construction put forward by Peano, any theorem that
is demonstrated by means of the axiom system of a four-dimensional space
cannot be considered a theorem of a three-dimensional space, since it has
not been proved from axioms I–XVI. After all, if a theorem is deduced from
axioms I–XV and A, then it cannot be considered a theorem of elementary
geometry proper, since axiom A can play a role in its proof. Peano’s argument
attempts to block Segre’s strategy, according to which results obtained in
n+ 1-dimensional linear spaces can be applied to n-dimensional spaces; the
inclusion of axiom A in Peano’s construction involves a a substantial use of
n+ 1-dimensional tools.32

Peano’s conclusion is that Segre’s analogical use of four-dimensional linear
spaces to prove theorems of three-dimensional linear spaces is unjustified. In
his words:

Some writers, from the fact that many properties of plane figures

are derived from properties of solid figures, deduce by analogy

that properties of figures of ordinary space can be derived from

30Note that 2 is the class of classes of points that constitute straight lines, and recall
that 3 is the class of planes, and

V

, depending on the context, is the empty set (axiom VII)
or a propositional constant that means the absurd (axioms II, XII and XV). See Footnote
16.

31Note that, in this context,

V

is the empty set. See Section 2 for an informal rendering
of Axiom XVI.

32In my view, Peano’s argument focusses on the fact that a theorem demonstrated in a
four-dimensional space is unjustified in a three-dimensional space, and thus relies on its
epistemological status rather than on its being true or false in a three-dimensional space.
Bottazzini [2001, pp. 303–304] reports an alternative interpretation of the aforequoted
passage found in [Bozzi, 2000, pp. 104] and suggests that Peano might identify theory and
interpretation.
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considerations in 4-dimensional space. But the analogy is illusory.

[Peano, 1891a, p. 68]

A corollary of Peano’s statement would be that, if the use of four-
dimensional space in the proof of a three-dimensional theorem cannot be
taken for granted, then the fact that “many properties of plane figures are
derived from properties of solid figures” is also unjustified for similar reasons.
Peano’s conception of what constitutes a specific geometry, which can be
seen as an defence of purity of method of proof, clarifies this issue.

3.4. Purity and Desargues’s theorem. In the first reply to Segre’s [1891a]
paper, Peano argues that linear, planar and solid geometry are constituted
by specific axioms:

[I]f by geometry of the straight line (1-dimensional) we mean that

which develops the consequences of axioms 1–11; by plane geometry

(2-dimensional) that which develops the consequences of [axioms]

1–14, and by solid geometry that which also uses the 15th axiom,

then we will have drawn a scientific distinction. [Peano, 1891a,

p. 68]

Informally, it could be observed that some geometrical propositions deal
with straight lines and segments, others with plane figures and others with
solid figures. But, as Peano states, this is just a “didactic distinction” [1891a,
p. 68]. In his view, the axioms from which a theorem is deduced, rather than
its informal content, determine its nature. Therefore, a proposition whose
proof requires the use of axioms of linear, planar or solid geometry will be
considered a theorem of linear, planar or solid geometry, respectively, even if
what is suggested by its wording indicates otherwise.

Peano’s criterion for the stratification of elementary geometry can be
connected to the debate on fusionism that took place in the last years of the
nineteenth century. The debate focussed on the use of solid geometry in the
solution of problems and the proof of theorems of planar geometry.33 In fact,
Peano played a significant role in this debate with his contribution to the
clarification of the status of Desargues’s theorem on homological triangles—
which he called ‘teorema fondamentale sui triangoli omologici ’. According
to its planar version, Desargues’s theorem states that if the corresponding
vertices of two triangles that lie on the same plane intersect in a point, then
the intersections of the corresponding sides of the two triangles are collinear.
Desargues’s theorem occupied a prominent place in the debate on fusionism
because, even though the content of its planar version suggests that it belongs
to planar geometry, its proof uses solid techniques.

In Principii di Geometria, Peano states that from Axiom XV and the
following theorem:

p ϵ 3 . a, b, c, d ϵ p . a �= b . c �= d . e ϵ 1 . e �ϵ p : C∴

r ϵ 2 . r C(eab)′′ . r C(ecd)′′ : �=r

V,

which can informally be read as “if in a plane p there lie two straight lines
ab and cd, and if e is a point outside the plane p, then the planes (eab)′′

and (ecd)′′ have a line in common”, Desargues’s theorem can be proved

33On the debate on fusionism, see [Arana; Mancosu, 2012, pp. 302–324].
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Figure 1. Planar Desargues’s theorem adapted from Peano’s
[1894, p. 139] formulation.

[1889b, p. 89]. In ‘Osservazioni del Directore sull’articolo precedente’, Peano
confirms this idea, but he also adds the following:

[T]he geometry of the straight line is reduced to almost nothing

[...]. The geometry of the plane is already broader; the coordinates

can already be established there, but neither the equation of the

straight line can yet be found [...], nor can one demonstrate the

theorem of homological triangles. [Peano, 1891a, p. 68]

Although he does not specify as much, it is reasonable to assume that Peano
refers here to the planar version of Desargues’s theorem. He argues, without
justification, that this theorem is independent of planar geometry. This
is historically significant, since, despite the informal content of the planar
version of the theorem, an independence result settles the impossibility
of proving it using exclusively planar means. In ‘Sui fondamenti della
Geometria’, Peano formulates the solid version of Desargues’s theorem as
follows (see the corresponding planar version in Figure 1):

If among the ten points e, a, b, c, d, h, m, n, x, the first four of
which are not coplanar, nine occur in the following relations:

h ε ad .h ε bc . e ε am .n ε ed .n ε mh . f ε mb .n ε cf . a ε xb . c ε xd . e ε xf,

then the remainder will also occur in them. [Peano, 1894, p. 139]

On this occasion, Peano explicitly distinguishes between the planar and
the solid versions of Desargues’s theorem, and argues that both can be
demonstrated from the aforementioned theorem and axiom XV [1894, p. 139].
And then he goes on to state the following:

The theorem of homological triangles in the plane is, however, a

consequence of postulate XV, and therefore it is a theorem of solid
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geometry. That it is not a consequence of the previous postulates

is shown [by the following:] if by p we mean the points of a surface,

and by c ε ab we mean that the point c lies on the geodesic arc

that joins the points a and b, then all the postulates from I to

XV are verified, and the proposition on homological triangles does

not always hold [non sussiste sempre]. However, this proposition

continues to be valid for surfaces with constant curvature. [Peano,

1894, p. 139]

This is a confirmation of the claims made in ‘Osservazioni del Directore
sull’articolo precedente’ that Desargues’s theorem belongs to solid geometry
and is independent of planar geometry. Peano sketches an independence
proof by exemplification—that is, he gives an example of an interpretation
of the primitive terms that satisfies all the axioms of planar geometry
(namely, axioms I–XIV) but does not satisfy Desargues’s theorem. Peano
thus implicitly, and for the first time, considers the possibility of a non-
Desarguesian plane.34 In the previous section, it has been observed that Peano
advocated purity concerning his preference for the autonomy of geometry
from the concept of number and his rejection of the use of analysis in the
foundations of geometry. There is a second notion of purity involved in
Peano’s (sketched) proof of independence of Desargues’s theorem from the
axioms of plane geometry. This second notion deals with the method of proof;
the proof of a theorem is considered pure if it does not require any other
means than what is stated in the theorem. Purity of method and purity of
method of proof are related in the sense that they involve the avoidance of
concepts which are foreign to the relevant question. Both notions of purity
are also historically connected; as Arana and Mancosu state, in the fusionist
debate regarding the use of solid techniques in the solution of planar problems
“ ‘purity’ in the direction of eliminating metrical considerations from proofs
of projective theorems might come at the cost of bringing considerations
related to space in poofs of plane theorems” [2012, p. 303]. Peano’s claim
that Segre’s conception of point is arithmetical can be associated with a
rejection of metrical considerations in the foundation of geometry. Moreover,
Peano’s view of the content of geometrical statements, and specifically of
the theorems of solid geometry (even if their informal content indicates that
they are planar) constitutes his way out of the issue suggested by Arana and
Mancosu.35

Peano’s stratification of geometry on the basis of groups of axioms an-
ticipates his account of the nature of Desargues’s theorem. Despite the

34For a reconstruction of Peano’s sketch of a proof of independence and a proposal of a
suitable model, see [Arana; Mancosu, 2012, pp. 317–321].

That Peano, and not Hilbert, was the first to consider a non-Desarguesian plane is
not unanimously acknowledged. While Whitehead [1906, p. 11] defends that Peano, and
then Hilbert, proved the consistency of a non-Desarguesian plane, Hallett [2008, p. 225]
mentions only Hilbert as the first who considered a model of non-Desarguesian geometry.
The model suggested in [Arana; Mancosu, 2012, pp. 317–321] can help to settle this
historical issue; I agree with their claim that “Peano deserves priority for having first found
a non-Desarguesian plane” [2012, p. 323].

35I am indebted to an anonymous referee for suggesting that there are two different
notions of purity involved in Peano’s critique of Segre’s hyperspace geometry.
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fact that the informal content of the planar version involves only planar
considerations, for Peano—since its proof requires the use of axiom XV and
thus solid geometry—it has to be considered a theorem of solid geometry. In
his words:

[A] true proposition in plane geometry ceases to hold [cessa di

sussistere] in the geometry of the straight line, and a proposition of

solid geometry no longer holds [non sussiste più] in plane geometry.

The theorem of homological triangles is then a proposition of solid

geometry and not of plane geometry. [Peano, 1891a, p. 69]

According to Peano’s notion of purity of method of proof, there is no
fundamental connection between what a theorem informally states and the
principles involved in its proof. In this sense, what is suggested by the wording
of the theorem is irrelevant, since its nature is completely determined by its
deductive relations with the axioms. As has been stated above, the proof of
independence of Desargues’s theorem from planar geometry is significant in
this regard, because it shows that no proof that uses only planar geometry
is possible and, therefore, the possibility of counting this theorem among
the propositions of planar geometry is—according to Peano’s notion of
purity—ruled out.36

Peano’s notion of content, which is completely determined by deductive
relations, signals how he conceives the development of geometry: that is,
as the process of demonstration of theorems from the axioms. Peano’s
considerations regarding Desargues’s theorem indicate that this process is,
for Peano, purely formal, and that there is no room for any significant appeal
to specific geometrical content.

4. Abstract development of geometry

As has been observed in Section 3.2, in the construction process of ele-
mentary geometry, Peano distinguishes between a pre-mathematical phase,
where the axioms are selected and formulated, and a properly mathematical
phase, where the consequences of those axioms are derived. The latter phase
corresponds to a “perfected logic” [1891a, p. 67], where absolute rigour is
fundamental. Peano argues that every step in a proof has to be determined
by rigorous laws and and he thus dismisses any role played by intuition or
by any other principle that is logical, or is not included in the axioms or the
definitions [1891a, p. 67].

This is confirmed by Peano in Principii di Geometria, where he puts
forward his conception of mathematical—and specifically geometrical—proof.
For Peano, in a demonstration, mathematical laws are put in a form analo-
gous to algebraic equations, and are then grouped and transformed according
to laws of reasoning expressed in the form of logical identities [1889b, p. 81].
Peano first evaluated the logical principles that could be used to regiment a
mathematical proof in the introductory part of Arithmetices principia nova

36In contrast to Peano, Hilbert seems to attribute more importance to the informal
content of Desargues’s theorem. In his 1898–1899 lecture notes, Hilbert states that the
content of Desargues’s theorem belongs to planar geometry, while its proof requires the
use of (three-dimensional) space [Hallett; Majer, 2004, pp. 223, 315–316]. On Hilbert’s
notion of purity of method, see [Hallett, 2008] and [Arana; Mancosu, 2012, pp. 324–344].
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methodo exposita [1889a, pp. 24–33]/[1973, pp. 104–113]. Accordingly, in
mathematical demonstrations, it is fundamental that mathematical proposi-
tions are expressed in such a way that logical laws can be applied to them.
Peano affirms that propositions should be reduced to formulas analogous to
algebraic equations [1889b, p. 81], but his symbolization of geometry is actu-
ally rather more complex and sophisticated.37 Using just a minimal collection
of primitive geometrical terms (which receive a symbolic representation),
Peano expresses any proposition of geometry by means of the formalism of his
mathematical logic. The formulation of the axioms of elementary geometry,
some of which have been presented in Section 3.2, are examples of Peano’s
symbolization. No trace of natural language can be found in these axioms;
in fact, logical or class-theoretical symbols are used to connect geometrical
terms. Peano’s symbolization of geometry aims at expressing geometrical
laws without ambiguity and with unimpeachable rigour.

Despite Peano’s efforts to systematize mathematical proofs, he did not
fully develop a deductive calculus. The demonstrations included in Principii
di Geometria [1889b] and ‘Sui fondamenti della Geometria’ [1894] are, in fact,
sketches of proofs wherein most steps—and the logical laws which regiment
them—are not made explicit. Yet, it is clear that, besides the geometrical
axioms and definitions that are used as premises in demonstrations, only
logical laws can be used as a means to proceed in a proof [1889b, p. 81].
Moreover, Peano developed his calculus of classes and sentential calculus to a
significant degree, and incrementally refined the formal apparatus that could
be used to regiment mathematical proofs. From the first part of the second
volume of the Formulaire de mathématiques [1897, p. 254] onwards, Peano
provides a list of inference rules. In ‘Formules de Logique Mathématique’,
these inference rules are understood as general rules of reasoning [1900,
pp. 320–322], and Peano offers at least one instance of a fully-formalized
proof in the calculus of classes, in which every step is the result of the
application of an explicitly stated inference rule [1900, pp. 325–327].38

In contrast with Pasch or Hilbert, Peano’s first works on the foundations
of mathematics develop, to a certain extent, a notion of proof and lay down
fundamental elements of a fully formalized deductive calculus. The develop-
ment of logical calculi and efforts toward the symbolization of mathematical
statements are key elements in this context. Peano’s claim that different
geometries are determined by the fact that their theorems are consequences
of specific lists of axioms relies on his work on the systematization of the
notion of proof.

In fact, Peano’s sentential calculus and calculus of classes are fundamental
for verifying that only the axioms, the definitions of derived notions, and
logical laws play a role in geometrical proofs. Once the axioms and primitive
notions are established as an analysis of intuitive content, and all derived
notions are defined in terms of the selected primitive concepts, geometry does
not rely on the specific nature of these primitive notions. In other words,
after a pre-mathematical phase where the empirical foundation of geometry

37On the notion of symbolization, and on Peano’s reformulation of mathematical theories,
see [Bertran-San Millán, 2021b].

38On the evolution of Peano’s logical calculi, see [Bertran-San Millán, 2021a].
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is secured and its basic components are laid down, the specific nature of the
fundamental concepts is irrelevant in a second, properly mathematical phase.
This abstract character of the axioms comes into play in the derivation of
geometrical laws. According to Peano’s characterization of the process of
demonstration of theorems, the meaning of the primitive terms is left aside.
In Peano’s words:

[T]here is a category of entities, called points. These entities are

not defined. Moreover, given three points, a relationship between

them is considered, expressed by the script c ϵ ab, which likewise

is not defined. The reader can understand [intendere] by the sign

1 any category of entities, and by c ϵ ab any relationship between

three entities of that category; all the definitions that follow (§2)
will always have a value, and all the propositions of §3 will be

founded [sussisteranno].39 [Peano, 1889b, p. 77]

Peano’s remark that any meaning can be attached to the symbols ‘1’ and
‘c ϵ ab’ amounts to his saying that he considers them abstract symbols, that
is, symbols with no specific meaning, to be used as place-holders for any
instance of a particular category of entities. As Peano states, ‘1’ can refer
to any domain of entities and ‘c ϵ ab’ to any relation between three of these
entities.

Peano’s proofs of independence bear witness to the abstract application
of such primitive terms. In the previous section, the sketch of the proof
of independence of Desargues’s theorem from planar geometry has been
considered, and there Peano provides an interpretation of the primitive terms
that does not correspond to their standard interpretation. In fact, Peano
even considers examples of interpretation of the geometrical primitive terms
that fall outside geometry, which reinforces the idea that, in certain contexts,
these terms may be treated as abstract. Consider the following interpretation
of Axiom III found in Principii di Geometria:

(III) a ϵ 1 . C. aa = V.

If any relation between three entities takes the place of the funda-

mental relation c ϵ ab, this proposition [Axiom III] is not true in

general. If 1 means (finite) number, and we take as the fundamental

relation an equation f(a, b, c) = 0, which we will suppose algebraic

and of first degree in c, the coefficient of c in f(a, b, c) must be

divisible by a− b, and the known term must not be [divisible by

a− b], for Prop. 3 [Axiom III] to be true—which here in our case

means: the equation f(a, a, c) = 0 cannot be satisfied by any value

of a and c. [Peano, 1889b, p. 83]

Note that the interpretation provided of the terms ‘1’ and ‘c ϵ ab’ deter-
mines that Axiom III acquires a completely different meaning. However, this
does not invalidate the argument as a consideration of the semantic status
of Axiom III. There is no mention of those empirical aspects of the primitive
terms that make the content of Axiom III truly geometrical, and yet there is

39In §2 of Principii di Geometria [1889b, pp. 61–62] Peano defines, among other derived
notions, the ray operation ′ and the classes 2 and 3 of straight lines and planes, respectively.
The theorems in §3 [1889b, pp. 62–64] draw consequences from these definitions.
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absolutely no doubt that in this passage Peano is establishing conditions of
satisfiability of Axiom III.

All in all, the notion of mathematical proof Peano develops, together with
his conception of the meaning of the primitive terms of geometry in the
context of the demonstration of theorems, can be connected to deductivism.
Deductivism revolves around the idea of guaranteeing rigour in mathematical
reasoning, and became prominent at the turn of the twentieth century after
the works of Frege, Pasch and Hilbert. As Pasch argues in Vorlesungen
über neuere Geometrie with regard to projective geometry, “the process
of deducing must everywhere be independent of the sense of geometrical
concepts; [...] only the relationships between the geometrical concepts [...]
should come into consideration” [1882, p. 98]. For Pasch, all traces of
intuition have to be eliminated in mathematical proofs by disregarding
the meaning of the symbols in deductions.40 Pasch’s account squares with
Peano’s consideration of a propaedeutic phase and a mathematical phase in
the construction of mathematical theories, and his claim that, in the later
mathematical phase, the meaning of the primitive terms is irrelevant.

The fact that Pasch can be considered an empiricist and a deductivist
mathematician and that both aspects are instrumental in his axiomatization
of projective geometry help shed light on my reconstruction of Peano’s
geometry. Peano was in no way alone in his effort to reconcile the selection
of a core of empirically-informed concepts and axioms, with a conception of
the derivation of theorems that leaves aside the meaning of the primitive
terms occurring in them.

5. Concluding remarks

For Peano, geometry had to be constructed from the simplest and the
fewest primitive notions possible. This determined to a great extent his
choice of the notion of point, and the relation of incidence between a point
and a segment, as the basic concepts of geometry. The concepts of line, plane
or even the notion of space are either unnecessarily complex—and can be
defined in terms of point and segment—or too inexact. Moreover, Peano’s
resolute preference for synthetic geometry, guided by his conception of purity
of method, informs his claim that geometry proper requires its foundations
to be free from arithmetical or algebraic considerations, and thus rules out
the involvement of analysis or algebra as the basis of the construction of
geometry.

In this sense, Peano’s disagreement with Segre concerning hyperspace ge-
ometry is not only methodological, but also fundamental. To take advantage
of the use of results of analysis in geometry, Segre advocates for an abstract
notion of point that is determined exclusively as a sequence of real numbers,
and thus defends a close relationship between analysis and geometry. In
contrast, for Peano the primitive notions must be intuitive and obtained by
experience, and then provide the base for the formulation of a collection of
axioms.

That Peano insists first, on simplicity, precision, and maximally reducing
the number of primitive notions, and second, on the intuitive character

40On Pasch’s deductivism, see [Schlimm, 2010, pp. 102–107].
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of these notions guarantees, to a certain extent, a secure ground for the
construction of geometry. But, since these notions cannot be defined and
only their relational features are expressed in the axioms, the primitive
geometrical notions are underdetermined in the axiomatization. This is not
seen by Peano as a defect in his approach, but as a necessary feature of the
best possible construction of geometry. An axiomatization is the result of a
specific systematization of the properties of the primitive notions, but cannot
be identified with an explicit definition.

Peano considers a second notion of purity, according to which the content
of geometrical propositions is not determined by their informal wording, but
by their deductive relations with the axioms. Accordingly, since the proof of
Desargues’s theorem requires the use of an axiom of solid geometry (and is,
in fact, independent from linear geometry), for Peano this theorem belongs
to solid geometry.

Geometry proper begins only once the axioms have been selected and
formulated, at which point the theorems need to be demonstrated. And
here again Peano’s methodological principles determine the nature of this
process of demonstration: it has to be regimented by logical laws and proceed
exclusively by logical means. I claimed that the notions of purity that can
be extracted from Peano’s geometrical works and his understanding of a
mathematical proof entails his endorsement of deductivism. It is then not
surprising that Peano highlights the abstract character of this mathematical
phase. The nature of the primitive notions is fundamental in the selection
and formulation of the axioms, but once this basis is secured, their specific
features become irrelevant. The consideration of a variety of interpretations
of the primitive terms in the independence arguments that can be found
both in Principii di Geometria [1889b] and ‘Sui fondamenti della Geometria’
[1894] bear witness of Peano’s abstract understanding of the axioms.
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géométries non euclidiennes. Memorie della Reale Accademia delle Scienze
di Torino, Series II, 29, pp. 365–404.

Grassmann, H. (1844). Die Lineale Ausdehnungslehre. Leipzig: Otto
Wigand.

Grassmann, H. (1862). Die Ausdehnungslehre. Vollständig und in strenger
Form begründet. Berlin: Enslin.

Gray, J. (2007). Worlds Out of Nothing. A Course in the History of
Geometry in the 19th Century. London: Springer.

Hallett, M. (2008). Reflections on the Purity of Method in Hilbert’s
Grundlagen der Geometrie. In Mancosu [2008], pp. 198–255.

Hallett, M.; Majer, U. (Eds.) (2004). David Hilbert’s Lectures on the
Foundations of Geometry, 1891–1902. Heidelberg: Springer.

Kennedy, H. C. (1972). The Origins of Modern Axiomatics: Pasch to
Peano. The American Mathematical Monthly, 79 (2), pp. 133–136.
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